Резервирование. Методы резервирования систем

Классификация существующих методов резервирования представлена на рис.

Резервирование

Выше мы описали существо видов избыточности. Отметим, что в настоящее время в технических системах наибольшее распространение получила структурная избыточность.

Сущность структурного резервирования заключается в том, что к основному элементу (т.е минимально необходимому для выполнения заданных функций) присоединяют один или несколько дополнительных (резервных) элементов, предназначенных для обеспечения работоспособности объекта в случае отказа основного элемента).

По объему резервирования различают следующие виды;

  • - общее, предусматривающее резервирование объекта целиком
  • - раздельное, при котором резервируется отдельное элементы или их группы
  • - смешанное, совмещающее различные виды резервирования.

Резерв так же, как и технические системы, может быть восстанавливаемым и невосстанавливаемым. Первый из указанных применятся на обслуживаемых системах, причем стратегия его восстановления строится таким образом, чтобы безопасность системы не уменьшалась ниже заданного уровня. На обслуживаемых системах (невозвращаемые космические аппараты, автоматические метеостанции и др.) резерв, как правило, используется полностью и восстановлению не подлежит.

Резервирующие элементы могут находиться в различных режимах:

Нагруженном, облегченном и ненагруженном.

При ненагруженном режиме резервирующие элементы находятся в том же состоянии, что и основной элемент, т.е все элементы работают одновременно в одинаковых условиях.

Облегченный режим резерва означает, что нагрузка резервирующих элементов меньше, чем у основного элемента.

Ненагруженный резерв сводится к ситуации, в которой резервирующие элементы не имеют нагрузки до тех пор, пока не откажет основной элемент.

По характеру подключения различают:

  • - постоянное резервирование, при котором резервные элементы участвуют в функционировании объекта наравне с основными:
  • - замещением, когда функция основного элемента передается резервному только после отказа основного
  • - скользящее, при котором любой отказавший элемент может быть заменен резервным.

Резервирование является наиболее эффективным методом достижения наиболее высоких показателей надежности систем.

Резервированием называется способ повышения надежности путем включения резерва. Резервирование позволяет создавать системы, надежность которых может быть выше надежности входящих в него эле­ментов. Резервирование может быть осуществлено различными методами, которым свойственен общий признак - принцип избыточности. Это означает, что наряду с основными элементами, узлами или блоками, выполняющими заданные функции, в системе должны находиться избыточные (резервные) составляющие, которые не являются функционально необходимыми, а предназначены лишь для поддержания некоторого уровня надежности системы. Применение принципа избыточности приводит к усложнению РЭА, увеличению веса, габаритов, стоимости. Классификация методов резервирования представлена на рис. 3.5.

Рис. 3.5. Классификация видов резервирования

В резервированных системах с замещением отказавший элемент заменяется на исправный из числа резервных, причем эта замена чаще всего осуществляется с помощью переключателя (автоматически или вручную).

К достоинствам резервирования замещением относятся:

· отсутствие необходимости регулировки параметров системы после замены отказавшего элемента на исправный;

· резервные элементы могут находиться до момента включения их в систему в облегченном режиме, что способствует сохранению их ресурса и уменьшает потребление электроэнергии.

Однако такие системы имеют недостатки:

· необходимость использования переключателей, являющихся наименее надежными элементами РЭА;

· необходимость создания дополнительных устройств, контролирующих работоспособность, отыскивающих отказавший элемент и заменяющих его на исправный.

Все эти недостатки приводят к тому, что резервирование замеще­нием применяется преимущественно при резервировании сравнительно крупных функциональных узлов сложных систем.

В системах с постоянным включением резерва все элементы (как основные, так и резервные) электрически соединены так, что они находятся в одинаковых режимах. Такой вид резервирования рассчитывается с учетом последствий отказов элементов и видов этих отказов.

Достоинствами такого резервирования является:

· простота осуществления резервирования, следовательно, незначительное увеличение веса, габаритов и стоимости системы;

· отсутствие перерывов в работе системы после возникновения отказов. Постоянное резервирование является единственно возможным в тех системах, когда недопустим даже кратковременный перерыв в работе.

К недостаткам относятся:

· погашенный расход ресурса резервных элементов;

· отказ одного из элементов приводит к изменению режимов работы остальных.

Применение постоянного резервирования ограничивается тем обстоятельством, что одновременная параллельная работа элементов, уз­лов и блоков возможна лишь в некоторых системах. Поэтому постоянное включение резерва наиболее удобно при резервировании сравнительно мелких устройств системы (преимущественно элементов).

Общее резервирование представляет собой резервирование всей системы в целом. Раздельное резервирование состоит в резервировании системы по частям, по отдельным участкам.

Система с общим резервированием (рис. 3.6) функционирует нормально до возникновения отказа последней оставшейся исправной цепи. Пусть m - кратность резервирования, то есть количество резервных цепей. Если каждая j -ая цепь состоит из n элементов с вероятностью исправной работы P ij , то, используя теорему об умножении вероятностей, получаем, что вероятность сложного события, заключающегося в том, что в j -й цепи не произойдет ни одного отказа, равна произведению вероятностей исправной работы каждого элемента цепи, тогда:

Вероятность отказа одной цепи

Тогда вероятность исправной работы системы

Для случая, когда все элементы системы имеют одинаковую надежность, т.е. P ij =P, получаем

Рис. 3.6. Общее резервирование

Рис. 3.7. Раздельное резервирование

Система с раздельным резервированием (рис. 3.7) будет нормально работать при сохранении работоспособности хотя бы одного элемента в каждом из n - звеньев, вероятность отказа i -го звена

где q ij - вероятность отказа j -го элемента i -го звена.

Вероятность исправной работы системы с раздельным резервирова­нием P с равна произведению вероятностей исправной работы P i всех n - звеньев

Для случая одинаковых по надежности элементов P ij =P имеем

Смешанное резервирование (рис. 3.8) является комбинацией общего и раздельного, и расчет надежности при смешанном резервировании производится с помощью формул для общего и раздельного резервирования.

Рис. 3.8. Смешанное резервирование

Рис. 3.9. Эффективность различных видов резервирования

Для сравнения эффективности применения различных типов резервирования предположим, что имеется система, состоящая из n последовательно включенных одинаковых по надежности элементов, обладающих надежностью P =0,9 .

Как следует из рис. 3.9, на котором отложены рассчитанные значения соответствующих вероятностей, наибольшей эффективностью облададает раздельное резервирование, причем, чем больше количество элементов n , тем больше преимущество. Однако необходимо помнить о том предположении, которое было использовано при выводе формулы надежности резервированных систем, а именно - здесь подсчитывалась надежность системы с постоянно включенным резервом.

Примерами такого включения могут служить:

· системы, состоящие из нескольких передатчиков, работающих на общую антенну;

· радиолокационные станции, содержащие несколько параллельно работавших индикаторных устройств;

· параллельное электрическое включение нескольких элементов (резисторов, конденсаторов и т.п.).

Найдем величину среднего времени исправной работы T с системы, состоящей из элементов, включенных параллельно, один из которых является основным, а второй резервным.

Пусть интенсивности отказов этих элементов соответственно равны λ 1 и λ 2 . Тогда при экспоненциальном законе надежности вероятности их безотказной работы к моменту времени t равны

; и

Для системы

Как известно,

После подстановки пределов интегрирования получаем

Если элементы равнонадежны, т.е. λ 1 = λ 2 = λ , то

где T 0 – среднее время исправной работы одного элемента.

Для системы, состоящей из трех параллельно включенных однотипных элементов, находим

В общем случае при кратности резервирования m

Из последнего выражения следует, что увеличение кратности приводит к уменьшению вклада нового резервного элемента в среднее время исправной работы системы. Это явление объясняется тем, что при постоянном включении резервные цепи расходуют свой запас рабо­тоспособности одновременно с основной цепью.

Резервирование замещением предполагает включение резервных цепей только после отказа основной цепи. Включение резервных цепей может осуществляться как вручную, так и автоматически. В любом случае необходимо наличие индикатора отказа, управляющего устройства и переключателя. В качестве последнего обычно используются реле или электронные переключатели.

На рис. 3.10 изображена система, где

Б 1 …Б м – блоки основной и резервной цепей,

n 11 …n м1 – переключатели входных цепей,

n 12 …n м2 – переключатели выходных цепей,

У 1 …Б м- 1 – индикаторные и управляющее устройства.

Рис. 3.10. Резервирование замещением

При возникновении отказа блока Б 1 индикатор отказа подает сигнал на управитель У 1 , который отключает Б 1 по входу и выходу, подключая блок Б 2 . После возникновения отказа блока Б 2 система ведет себя аналогично.

Отказ любого из переключателей приводит к отказу резервной цепи, в которую он включен (при условии, что отказ переключателя не выводит из строя всю резервированную систему). Поэтому переключатель при расчете надежности рассматривается как элемент, соединенный со своим блоком последовательно (по надежности).

Резервирование – повышение надежности объекта введением избыточности, т.е. дополнительных средств и возможностей сверх минимально необходимых для выполнения объектом возложенных на него функций.

В различных областях техники используются разные виды резервирования – структурное, временное, функциональное, информационное.

В энергетике, в основном, применяют структурное резервирование, т.е. используют избыточные (резервные) конструктивные элементы, включенные параллельно основным (рабочим) и дублирующие их. При этом основным называют такой элемент структуры объекта, который минимально необходим для выполнения объектом заданных функций, а резервный обеспечивает работоспособность объекта в случае отказа основного элемента.

Структурное резервирование может осуществляться разными способами. При общем резервировании резервируется объект в целом, а при раздельном- его отдельные элементы. Кратностью резервирования называют отношение числа резервных элементов к числу основных: K p = N рез /N осн.

По числу резервных элементов различают однократное, двукратное и многократное резервирование. При раздельном резервировании Кр чаще всего бывает дробной величиной, а при общем – целым числом.
В энергетике, как правило, используется раздельное резервирование в виде дублирования отдельных наименее надежных и наиболее ответственных элементов, например, линий питательной воды паровых котлов, дымососов, некоторых установок питательных, конденсатных насосов и предохранительных клапанов. На один основной элемент обычно приходится один резервный.

При постоянном резервировании резервные элементы участвуют в функционировании объекта наравне с основным, а при резервировании замещением функции основного элемента передаются резервному элементу только после отказа основного.

Различие между постоянным включением резерва и нагруженным резервом замещения можно представить на следующих примерах: к первому относится резервный конденсатный насос, непрерывно работающий параллельно с основным, ко второму – паровой котел, находящийся в разогретом состоянии, но не вырабатывающий пар в паропровод.

Термины горячий, теплый и холодный резервы весьма удачны применительно к энергетике, и поэтому часто используются наравне с рекомендуемыми ГОСТ терминами соответственно нагруженный, облегченный, ненагруженный резервы.

В зависимости от места подключения резервного агрегата различают фиксированное резервирование, когда резервный агрегат должен быть введен взамен одного вполне конкретного работающего агрегата, и скользящее резервирование, когда резерв вводится вместо любого из работающих агрегатов данной группы.

Рассмотрим свойства некоторых способов резервирования, характерных для энергетического оборудования.

Преимуществом ненагруженного резерва является возможность сохранить ресурс резервного агрегата при нормальной работе остальных. Однако в энергетической практике ненагруженный резерв имеет серьезный недостаток – во многих случаях его нельзя ввести в работу тотчас после возникновения отказа основного оборудования, и поэтому могут временно ухудшиться условия поддержания заданной нагрузки. Так, если исправный турбоагрегат остановлен в резерв, то его ресурс не расходуется, но даже в самой экстренной ситуации потребуется некоторое вполне определенное время для пуска. Турбоагрегат может также работать с относительно малой нагрузкой (так называемый вращающийся резерв), и при необходимости набор нагрузки производится в темпе, ограниченном только динамическими свойствами энергоблока, но ресурс агрегата расходуется постоянно.

В энергетике часто одним или несколькими агрегатами резервируют целую группу работающего оборудования. Именно таким образом включены турбоагрегаты в общую энергосистему. На ТЭС с поперечными связями резервный котел может заменить любой вышедший из строя котел. Следовательно, это пример скользящего резерва.

Структурное раздельное резервирование элемента организуется двумя способами:

а) постоянное включение резерва


б) резервирование замещением

Схема а). При постоянном включении резервный элемент включен параллельно основному и работает вместе с ним. При отказе основного элемента установка сохраняет работоспособность за счет резервного элемента, принимающего на себя всю нагрузку. В этом случае нет необходимости включать резервный элемент и отключать отказавший основной, но резервный элемент изнашивается и расходует свой ресурс надежности вместе с основным.

Надежность системы двух одинаковых элементов (основного и резервного), включенных параллельно:

λ осн = λ рез = λ = 1/T эл

Данная система откажет при одновременном отказе обоих элементов. Согласно формуле полной вероятности при независимости событий вероятность отказа системы двух элементов при постоянном включении:

Q c = ∏Q i = (1 — P i) 2 = (1 — e -λt) 2 = 1 — 2e -λt + e -2λt

Вероятность безотказной работы указанной системы

P c = 1 — Q c = 2 e -λt — e -2λt

Среднее время безотказной работы

T c = ∫ P c dt = ∫ (2 e -λt — e -2λt)dt = (-2/λ e -λt + 1/2λ e -2λt) = 3/2T эл

Таким образом, при постоянном включении среднее время безотказной работы системы увеличилось в 1.5 раза.

Схема б). При резервировании замещением резервный элемент отключен, находится в состоянии готовности заменить отказавший основной элемент (холодной, теплой или горячей готовности).

При этом сохраняется резерв надежности дублирующих элементов и повышается общая надежность системы, но требуется осуществить включение резерва, вероятность чего также должна быть учтена. Включение резерва состоит в поиске отказа, отключении отказавшего элемента, подготовке и вводе резервного элемента в работу.

Количественный анализ показал, что среднее время безотказной работы систем двух элементов при резервировании замещением увеличивается вдвое

Поэтому предпочтительно резервирование замещением элементов. Но преимущества резервирования замещением перед постоянным включением резервного элемента снижаются, поскольку надежность включения также менее 1, и утрачиваются по мере приближения ее к 1.5/2=0.75. Кроме того, следует учесть, что резервный элемент в какой-то мере изнашивается и в нерабочем состоянии.

Резервирование - метод повышения надежности объекта введением дополнительных элементов и функциональных возможностей сверх минимально необходимых для нормального выполнения объектом заданных функций. В этом случае отказ наступает только после отказа основного элемента и всех резервных элементов.

Систему можно представить из ряда ступеней, выполняющих отдельные функции. Задача резервирования состоит в нахождении такого числа резервных образцов оборудования на каждой ступени, которое будет обеспечивать заданный уровень надежности системы при наименьшей стоимости.

Выбор наилучшего варианта зависит главным образом от того увеличения надежности, которое можно достичь при заданных расходах.

Основной элемент - элемент основной физической структуры объекта, минимально необходимой для нормального выполнения объектом его задач.

Резервный элемент - элемент, предназначенный для обеспечения работоспособности объекта в случае отказа основного элемента.

Виды резервирования

Структурное (элементное) резервирование - метод повышения надежности объекта, предусматривающий использование избыточных элементов, входящих в физическую структуру объекта. Обеспечивается подключением к основной аппаратуре резервной таким образом, чтобы при отказе основной аппаратуры резервная продолжала выполнять ее функции.

Резервирование функциональное - метод повышения надежности объекта, предусматривающий использование способности элементов выполнять дополнительные функции вместо основных и наряду с ними.

Временное резервирование - метод повышения надежности объекта, предусматривающий использование избыточного времени, выделенного для выполнения задач. Другими словами, временное резервирование - такое планирование работы системы, при котором создается резерв рабочего времени для выполнения заданных функций. Резервное время может быть использовано для повторения операции, либо для устранения неисправности объекта.

Информационное резервирование - метод повышения надежности объекта, предусматривающий использование избыточной информации сверх минимально необходимой для выполнения задач.
Нагрузочное резервирование - метод повышения надежности объекта, предусматривающий использование способности его элементов воспринимать дополнительные нагрузки сверх номинальных.
С позиций расчета и обеспечения надежности технических систем необходимо рассматривать структурное резервирование.

4.4.2. Способы структурного резервирования

По способу подключения резервных элементов и устройств различают следующие способы резервирования (рис. 4.4.1).

Рис. 4.4.1. Способы структурного резервирования

Резервирование раздельное (поэлементное) с постоянным включением резервных элементов (рис. 4.4.2).
Такое резервирование возможно тогда, когда подключение резервного элемента не существенно изменяет рабочий режим устройства. Достоинство его - постоянная готовность резервного элемента, отсутствие затраты времени на переключение. Недостаток - резервный элемент расходует свой ресурс так же, как основной элемент.

Резервирование раздельное с замещением отказавшего элемента одним резервным элементом (рис. 4.4.3). Это такой способ резервирования, при котором резервируются отдельные элементы объекта или их группы.

В этом случае резервный элемент находится в разной степени готовности к замене основного элемента. Достоинство этого способа - резервный элемент сохраняет свой рабочий ресурс, либо может быть использован для выполнения самостоятельной задачи. Рабочий режим основного устройства не искажается. Недостаток - необходимость затрачивать время на подключение резервного элемента. Резервных элементов может быть меньше, чем основных.

Отношение числа резервных элементов к числу резервируемых называется кратностью резервирования - m. При резервировании с целой кратностью величина m есть целое число, при резервировании с дробной кратностью величина m есть дробное несокращаемое число. Например, m=4/2 означает наличие резервирования с дробной кратностью, при котором число резервных элементов равно четырем, число основных - двум, а общее число элементов равно шести. Сокращать дробь нельзя, так как если m=4/2=2/1, то это означает, что имеет место резервирование с целой кратностью, при котором число резервных элементов равно двум, а общее число элементов равно трем.

При включении резерва по способу замещения резервные элементы до момента включения в работу могут находиться в трех состояниях:
- нагруженном резерве;
- облегченном резерве;
- ненагруженном резерве.
Нагруженный резерв - резервный элемент, находящийся в том же режиме, что и основной.
Облегченный резерв - резервный элемент, находящийся в менее нагруженном режиме, чем основной.
Ненагруженный резерв - резервный элемент, практически не несущий нагрузок.
Резервирование общее с постоянным подключением, либо с замещением (рис. 4.4.4). В этом случае резервируется объект в целом, а в качестве резервного - используется аналогичное сложное устройство. Этот способ менее экономен, чем раздельное резервирование. При отказе, например, первого основного элемента возникает необходимость подключать всю технологическую резервную цепочку.

Рис. 4.4.4. Резервирование общее

Резервирование мажоритарное ("голосование" n из m элементов) (рис. 4.4.5). Этот способ основан на применении дополнительного элемента - его называют мажоритарный или логический или кворум-элемент. Он позволяет вести сравнение сигналов, поступающих от элементов, выполняющих одну и ту же функцию. Если результаты совпадают, тогда они передаются на выход устройства. На рис. 4.4.5 изображено резервирование по принципу голосования "два из трех", т.е. любые два совпадающих результата из трех считаются истинными и проходят на выход устройства. Можно применять соотношения три из пяти и др. Главное достоинство этого способа - обеспечение повышения надежности при любых видах отказов работающих элементов. Любой вид одиночного отказа элемента не окажет влияния на выходной результат.

Рис. 4.4.5. Резервирование мажоритарное

Повышение надежности за счет резервирования оборудования

Резервирование - один из самых распространенных и кардинальных способов повышения надежности и живучести вычислительных систем. Однако, за резервирование приходится расплачиваться значительным увеличением габаритов, массы и потребляемой мощности.

Так же при этом усложняется проверка аппаратуры и ее обслуживание. Так как количество отказов увеличивается из-за увеличения количества аппаратуры. Резервирование уменьшает полезную нагрузку на аппаратуру и увеличивает ее себестоимость.

Основным параметром резервирования является кратность резервирования. Это отношение числа резервных устройств к числу рабочих (основных) устройств. Кратность резервирования ограничена жесткими пределами в отношении массы, габаритов и потребляемой мощности БЦВС.

Различают общее и раздельное резервирование. Резервирование БЦВМ в целом – это общее резервирование. В этом случае параллельно работают основная и резервные БЦВМ.

При раздельном резервировании БЦВМ разбивается на отдельные подсистемы, каждая из которых или некоторые из них резервируются отдельно. При использовании раздельного резервирования можно выделить несколько уровней резервирования:

1. Резервирование на уровни деталей

2. Резервирование на уровне элементов

3. Резервирование на уровне устройств.

На данный момент наиболее распространенным раздельным резервированием является резервирование на уровне устройств (ОЗУ, процессор, жесткие диски и т.д.), так как современные БЦВМ имеют модульное построение, а резервирование на уровне модулей значительно повышает ремонтопригодность.

В зависимости от способа включения резервного элемента или БЦВМ различают горячее и холодное резервирование.

При горячем резервировании резервные элементы работают в одинаковых условиях с основными элементами и выполняют все их функции. При этом увеличивается потребляемая мощность и усложняется обслуживание, так как необходимо выявлять отказавшие элементы и своевременно их заменять.

При холодном резервировании резервные элементы не работают, либо работают в облегченных условиях. В этом случае резервный элемент включается в работу только в случае выхода из строя основного элемента. Холодное резервирование потребляет меньше мощности, легче в обслуживании, и резервное элементы не расходуют свой ресурс. Однако, при холодном резервировании необходимо использовать специальные переключатели, позволяющие резервному элементу вступить в работу. Включение резервных элементов может происходить, как вручную, так и автоматически.

Холодное резервирование используется только на уровне крупных элементов или целых БЦВМ с применением различных методов обнаружения неисправностей.

Горячее резервирование может применяться и на более глубоких уровнях с использованием избыточности на основе мажоритарной логикой.

В реальной аппаратуре холодное и горячее резервирование обычно применятся в различных сочетаниях.

Рассмотрим различные способы резервирования:

1. Резервирование на основе мажоритарной логики.

Этот тип резервирования используется при горячем резерве элементов или целых БЦВМ. Выходные сигналы с основного и всех резервных элементов преобразуются в один сигнал на мажоритарном элементе. При этом сравниваются все сигналы, и правильным считается тот, который совпал большее число раз (2 из 3, 3 из 5 и так далее).

Достоинства мажоритарной логики резервирования:

2. Не требуется обнаружение неисправного элемента и переключение на резервный.

3. Подавляются все сбои.

Недостатки:

1. Существенно увеличивается объем, масса и потребляемая мощность оборудования.

2. Снижается быстродействие, так как мажоритарные элементы включаются последовательно с основными элементами вычислительной системы.

3. Отсутствует индикация отказавших устройств, что уменьшает ремонтопригодность.

4. Система отказывает, когда еще есть исправные элементы, так как мажоритарный элемент не может принять верные решения, если отказавших элементов больше, чем исправных.

При таком виде резервирования после каждого резервируемого элемента стоит детектор ошибок, фиксирующий несовпадение результатов работы основного и резервного элемента. В случае обнаружение несовпадения запускается диагностическая программа, определяющая, какой именно блок отказал, и исключающая его из работы до устранения ошибки.

Схематично подобная схема включения выглядит следующим образом:

Здесь Ао и Ар составляют первый блок вычислительной системы, причем Ао – основной элемент, а Ар – резервный. Оба этих элемента, за исключением случая, когда один из них неисправен, имеют одинаковые выходы.

Во и Вр – составляют второй блок. Выходы этих элементов так же идентичны.

Сигналы с основных и резервных элементов объединяются с помощью логического элемента «или» для того, чтобы при исключении из работы неисправного элемента сигнал все равно поступал в оба канала.

Аналогично можно применять резервирование на три, четыре и так далее элементов. При этом увеличивается вероятность безотказной работы, однако, значительно повышается потребляемая мощность, габариты, вес, усложняется структура вычислительной системы и программирование для нее.

Преимущества резервирования дублированием с детектором отказов:

1. Значительно увеличивается вероятность безотказной работы вычислительной системы.

2. Меньше резервных элементов, чем при использовании мажоритарной логики резервирования.

3. Повышается ремонтопригодность, так как точно известно, какой элемент отказал

4. Детектор ошибок не влияет на информационные потоки и не снижает быстродействие вычислительной системы, так как подключается параллельно, относительно проверяемых устройств.

Недостатки:

1. В случае обнаружения ошибки необходимо прервать работу основного программного обеспечения для обнаружения неисправного элемента и исключения его из работы.

2. Усложняется программное обеспечение, так как требуется специальная программа обнаружения неисправных элементов.

3. Система не может обнаружить ошибку при отказе одновременно основного и резервного элемента.

3. Резервирование на основе постепенной деградации вычислительной системы.

В этом случае, если все элементы вычислительной системы исправны, они функционируют в полном объеме, и каждый элемент выполняет свою функцию. Однако, стоит выйти из строя хотя бы одному элементу, сразу же запускается диагностическая программа, определяющая, какой именно элемент вышел из строя, и исключающая его из работы. При этом функции, которые исполнял вышедший из строя элемент, перераспределяются между рабочими элементами с сохранением всех функциональных возможностей, за счет уменьшения объема обрабатываемой информации или с уменьшением функциональности при сохранении объема обрабатываемой информации.

Так как бортовые вычислительные системы рассчитаны на максимальную загрузку, которая происходит достаточно редко, подобный способ резервирования значительно повышает надежность, без серьезных затрат.

Достоинства:

1. Повышается живучесть вычислительной системы.

2. Не увеличиваются габариты, масса и потребляемая мощность.

3. Повышается ремонтопригодность, так как точно известно, какой элемент отказал.

4. Не требуются специализированные элементы, анализирующие сигналы элементов, а, следовательно, всю вычислительную систему можно разрабатывать на стандартизированном оборудовании.

Недостатки:

1. Усложняется программное обеспечение, так как необходимо реализовывать алгоритмы, отслеживающие исправность элементов вычислительной системы и перераспределяющие задачи после выхода из строя одного или нескольких элементов

2. При выходе из строя элементов вычислительной системы снижается объем обрабатываемой информации или функциональность.

3. Резервирование возможно только на уровне процессорных модулей и ЭВМ.

4. Обслуживание становится дороже, так как заменять надо целые блики и ЭВМ.

Это основные способы резервирования с помощью оборудования. Обычно, в реальной аппаратуре они применяются в различных комбинациях, в зависимости от требуемого результата, степени необходимой надежности и живучести отдельных элементов вычислительной системы и всего комплекса в целом.


Понравилась статья? Поделиться с друзьями: