Что значат ядра в процессоре. Одноядерный или двухъядерный

…в процессе развития количество ядер будет становиться всё больше и больше.

(Разработчики Intel )

Краткая хроника «ядерной» гонки чипмейкеров, или Как процессор становился

1999 г. – анонсирован первый в мире 2-ядерный CPU – серверный RISC -процессор IBM Power 4 .

Стартовала эпоха многоядерных процессоров!

2001 г. – начались продажи 2-ядерных процессоров IBM Power 4 .

2002 г. – о перспективах использования двух ядер в своих процессорах архитектуры K8 заявила компания AMD . Практически одновременно с аналогичным заявлением выступила Intel .

Декабрь 2002 г. – вышли первые десктопные Intel Pentium 4 , поддерживающие «виртуальную» 2-ядерность – технологию Hyper-Threading .

2004 г. IBM выпустила второе поколение своих 2-ядерных процессоров – IBM Power 5 . Каждое из ядер Power 5 поддерживает одновременное выполнение двух программных потоков (то есть снабжено аналогом Hyper-Threading ).

18 апреля 2005 г. Intel выпустила первый в мире настольный 2-ядерный процессор Pentium Extreme Edition 840 (кодовое название – Smithfield ). Выполнен с использованием 90-нм технологии.

21 апреля 2005 г. AMD Athlon 64 X2 (кодовое название – Toledo ) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

1 августа 2005 г. AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Manchester ) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

В течение второго полугодия 2005 г. Intel выпускает:

Pentium D 8** (кодовое название – Smithfield ) с тактовой частотой от 2,8 до 3,2 ГГц. Выполнены с использованием 90-нм технологии. 2-ядерные процессоры Pentium D – это два независимых ядра, объединенных на одной кремниевой пластине. Ядра процессоров базируются на архитектуре NetBurst процессоров Pentium 4 ;

– линейку 2-ядерных процессоров Pentium D 9** (кодовое название – Presler ) с тактовой частотой от 2,8 до 3,4 ГГц. Выполнены с использованием 65-нм технологии (следует отметить, что инженеры Intel воспользовались преимуществом 65-нм технологического процесса, который позволяет либо уменьшить площадь кристалла, либо увеличить количество транзисторов).

23 мая 2006 г. AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Windsor ) с тактовой частотой от 2,0 до 3,2 ГГц. Выполнены с использованием 90-нм технологии.

27 июля 2006 г. – компания Intel Intel Core 2 Duo (кодовое название – Conroe ) с тактовой частотой 1,8 – 3,0 ГГц. Выполнены с использованием 65-нм технологического процесса.

27 сентября 2006 г. Intel продемонстрировала прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс (предположительно, в 2010 г.).

Ноябрь 2006 г. Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q6*** (кодовое название – Kentsfield ) с тактовой частотой 2,4 – 2,6 ГГц. Выполнены с использованием 65-нм технологии. Фактически представляют собой сборку из двух кристаллов Conroe в одном корпусе.

5 декабря 2006 г. AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Brisbane ) с тактовой частотой от 1,9 до 2,8 ГГц. Выполнены с использованием 65-нм технологии.

10 сентября 2007 г. AMD выпустила нативные (в виде одного кристалла) 4-ядерные процессоры для серверов AMD Quad-Core Opteron (кодовое название – Barcelona ). Выполнены с использованием 65-нм технологии.

19 ноября 2007 г. AMD выпустила 4-ядерный процессор для домашних компьютеров AMD Quad-Core Phenom . Выполнен с использованием 65-нм технологии.

Ноябрь 2007 г. – компания Intel представила линейку 2-ядерных процессоров Penryn с тактовой частотой от 2,1 до 3,3 ГГц. Выполнены с использованием 45-нм технологии.

6 января 2008 г. – компания Intel выпустила (под марками Core 2 Duo и Core 2 Extreme ) первые партии 2-ядерных процессоров Penryn , выполненных с использованием 45-нм технологии.

Февраль 2008 г. – всемирно известный производитель коммуникационного оборудования, компания Cisco Systems , разработала QuantumFlow – 40- ядерный процессор, предназначенный для установки в сетевое оборудование. Процессор, на разработку которого ушло более 5 лет, способен выполнять до 160 параллельных вычислений. Чип будет использоваться в новых сетевых устройствах.

Март 2008 г. – одноядерные процессоры семейства Pentium 4 (661, 641 и 631) и 2-ядерные семейства Pentium D (945, 935, 925 и 915) сняты с производства.

Март 2008 г. – компания AMD выпустила 3-ядерные процессоры Phenom X3 8400, 8600, 8450, 8650 и 8750 с тактовой частотой от 2,1 до 2,4 ГГц. Выполнены по 65-нм технологии. Фактически эти процессоры представляют собой 4-ядерные Phenom с одним отключенным ядром. Анонсированы эти процессоры были в сентябре 2007 г. По словам разработчика, подобные чипы рассчитаны на тех, «кому двух ядер мало, но за четыре он платить не готов».

Основное достоинство 3-ядерных процессоров заключается в том, что они имеют более низкую по сравнению с 4-ядерными чипами стоимость, но работают быстрее 2-ядерных, таким образом, заполняя ассортиментное пространство между теми и другими. Главный конкурент AMD – корпорация Intel – такие процессоры не выпускает. Впервые о намерении приступить к производству подобных чипов AMD объявила в 2007 г.

Март 2008 г. – компания AMD на выставке 2008 в Ганновере представила свои первые процессоры, изготовленные на базе 45-нм технологического процесса. 4-ядерные чипы под кодовым названием Shanghai для серверов и Deneb для настольных систем были изготовлены на фабрике Fab 36 в Дрездене, Германия. Для их производства использовались 300-мм подложки. Техпроцесс с топологическим уровнем 45 нм был разработан компанией AMD совместно с ее партнером, корпорацией IBM . Новые процессоры Shanghai и Deneb , как и Phenom X4 , являются «по-настоящему» 4-ядерными, так как все четыре ядра размещены на одной кремниевой подложке.

Апрель 2008 г. – компания AMD выпустила 4-ядерные процессоры Phenom X4 – 9550, 9650, 9750 и 9850 – с тактовой частотой 2,2–2,5 ГГц. Выполнены по 65-нм технологии.

Май 2008 г. – выпущен 8-ядерный процессор Cell от IBM . Используется в PlayStation .

Сентябрь 2008 г. – компания Intel Intel Core 2 Quad Q8*** (кодовое название – Yorkfield ) с тактовой частотой 2,3 – 2,5 ГГц. Выполнены с использованием 45-нм технологии.

Сентябрь 2008 г. – компания Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q9*** (кодовое название – Yorkfield ) с тактовой частотой 2,5 – 3,0 ГГц. Выполнены с использованием 45-нм технологии.

15 сентября 2008 г. – на конференции VMworld , организованной компанией VMware , корпорация Intel официально сообщила о выходе первого в отрасли массового 6-ядерного серверного процессора Xeon 7400 (кодовое название чипов – Dunnington ). Фактически представляет собой три 2-ядерных кристалла, объединенных в одном корпусе. Создан по 45-нм технологии, работает на частоте 2,66 ГГц. Может работать с несколькими операционными системами одновременно. Имеет аппаратную поддержку технологии виртуализации (Intel Virtualization Technology ).

Октябрь 2008 г. – компания Intel разработала 80-ядерный процессор. Изготовлен он по 65-нм технологии, что позволило уменьшить его размеры, но, тем не менее, он остается еще слишком большим для коммерческого использования. Скорее всего, в ближайшие 7 лет процессор будет находиться в стадии доработки. На данный момент существующие технологии не позволяют снизить его энергопотребление и размеры. По мнению специалистов, массовое производство станет возможно только после 2012 г., когда Intel освоит 10-нм техпроцесс. На данный момент известно, что компания планирует введение 32-нм технологии производства процессоров в конце 2009 г., а 22-нм – в 2011 г.

Сейчас процессор не способен даже запустить операционную систему, но это не смущает разработчиков. Происходит масштабная «обкатка» новых функций, которые будут применяться в будущем в процессорах, одной из которых станет smart -функция по отключению неиспользуемых ядер, что положительно скажется на потреблении электроэнергии и тепловыделении.

17 ноября 2008 г. Intel представила линейку 4-ядерных процессоров Intel Core i7 , в основу которых положена микроархитектура нового поколения Nehalem . Процессоры работают на тактовой частоте 2,6 – 3,2 ГГц. Выполнены по 45-нм техпроцессу. Их главной особенностью является то, что контроллер памяти стал составной частью процессора. Это позволило увеличить скорость работы чипа с модулями оперативной памяти и сделало ненужной фронтальную системную шину FSB .

Декабрь 2008 г. – начались поставки 4-ядерного процессора AMD Phenom II 940 (кодовое название – Deneb ). Работает на частоте 3 ГГц, выпускается по техпроцессу 45-нм.

Февраль 2009 г. – компания AMD продемонстрировала первый 6-ядерный серверный процессор. Выполнен с использованием 45-нм технологии. Кодовое название процессора – Istanbul , он придет на смену серверным процессорам Opteron с кодовым названием Shanghai , которые имеют только 4 ядра.

Февраль 2009 г. – компания AMD объявила о начале поставок новых моделей:

– 3-ядерный Phenom II X3 (кодовое название чипа – Toliman ) с тактовой частотой 2,8 ГГц. Выполнен по 45-нм технологии;

– 4-ядерный Phenom II X4 810 (кодовое название чипа – Dragon ) с тактовой частотой 2,6 ГГц. Выполнен по 45-нм технологии.

Апрель 2009 г. – компания Intel начала поставки 32-нм центральных процессоров Westmere производителям , как мобильных систем, так и десктопов. Пока речь не идет о готовых коммерческих решениях, а лишь о первых тестовых экземплярах, основное предназначение устройств – их тестирование для выявления некоторых особенностей работы, чтобы производители смогли отладить конструкцию своих систем, и выпустить в продажу полностью совместимые с новым поколением процессоров компьютеры.

По своей сути, процессоры Westmere представляют собой изготовленную по 32-нм техпроцессу архитектуру Nehalem . Семейство включает в себя две категории микрочипов: решения для настольных компьютеров (кодовое обозначение – Clarkdale ), и устройства для мобильных систем (кодовое обозначение – Arrandale ).

«Мобильные» процессоры Arrandale включают не только само процессорное ядро, но и интегрированную графику. Согласно заверениям разработчиков, такая архитектура позволяет существенно снизить энергопотребление связки процессор–системная логика с интегрированной графикой. Помимо этого, за счет перехода на более прецизионный технологический процесс, снизится стоимость изготовления самих микрочипов, а за счет интеграции большего количества элементов на одном «кристалле» снижается и стоимость готовых мобильных компьютеров.

Поставки серийных экземпляров процессоров Westmere должны стартовать к концу 2009 г.

Апрель 2009 г. – компания AMD выпустила две новые модели 4-ядерных центральных процессоров для ПК – Phenom II X4 955 Black Edition и Phenom II X4 945 . Выполнены по 45-нм технологии.

14 мая 2009 г. – компания Fujitsu объявила о создании самого производительного в мире процессора, способного выполнять до 128 млрд. операций с плавающей запятой в секунду. Процессор SPARC64 VIIIfx (кодовое название Venus ) работает примерно в 2,5 раза быстрее, чем самый мощный чип крупнейшего в мире поставщика микросхем корпорации Intel .

Увеличение скорости работы стало возможным за счет более плотной интеграции схем процессора и перехода на 45-нм технологию. Ученые смогли расположить на кремниевой пластинке площадью 2 см 2 8 вычислительных ядер, вместо 4-х в предыдущих разработках. Снижение уровня топологии также привело к сокращению потребления электроэнергии. В Fujitsu заявляют, что их чип потребляет в 3 раза меньше энергии, чем современные процессоры Intel . Помимо 8 ядер, чип включает в себя контроллер оперативной памяти.

Процессор SPARC64 VIIIfx планируется использовать в новом суперкомпьютере, который будет построен в институте естественных наук RIKEN в Японии. В него войдут 10 тыс. таких чипов. Суперкомпьютер планируется использовать для прогнозирования землетрясений, исследований медицинских препаратов, ракетных двигателей и прочих научных работ. Запустить компьютер планируется до весны 2010 г.

Май 2009 г. – компания AMD представила разогнанную версию графического процессора ATI Radeon HD 4890 с тактовой частотой ядра, увеличенной с 850 МГц до 1 ГГц. Это первый графический процессор, работающий на частоте 1 ГГц. Вычислительная мощность чипа, благодаря увеличению частоты, выросла с 1,36 до 1,6 терафлоп (следует заметить, что видеокарты на базе разогнанной версии Radeon HD 4890 не нуждаются в жидкостном охлаждении – достаточно вентилятора).

Процессор содержит 800 вычислительных ядер, поддерживает видеопамять GDDR5 , , ATI CrossFireX и все другие технологии, присущие современным моделям видеокарт. Чип изготовлен на базе 55-нм технологии.

27 мая 2009 г. – корпорация Intel официально представила новый процессор Xeon под кодовым названием Nehalem-EX . Процессор будет содержать до 8 вычислительных ядер, поддерживая обработку до 16 потоков одновременно. Объем кэш-памяти составит 24МБ .

В Nehalem-EX реализованы новые средства повышения надежности и облегчения технического обслуживания. Процессор унаследовал некоторые функции, которыми обладали чипы Intel Itanium , например, Machine Check Architecture (MCA) Recovery . Также в 8-ядерном процессоре реализованы технологии Turbo Mode и QuickPath Interconnect . Первая технология отвечает за то, чтобы остановленные ядра можно было привести в «боевое состояние» почти мгновенно (что повышает производительность процессора), а вторая технология позволяет ядрам процессора напрямую обращаться к контроллерами ввода/вывода на скорости до 25,5 Гб/сек.

Nehalem-EX способен обеспечить в 9 раз более высокую скорость работы оперативной памяти по сравнению с Intel Xeon 7400 предыдущего поколения.

Новый чип подходит для объединения серверных ресурсов, виртуализации, запуска приложений с интенсивной обработкой данных и для проведения научных исследований. Его массовое производство планируется начать во второй половине 2009 г. Чип будет изготовлен на базе 45-нм технологии с применением формулы транзисторов hi-k . Число транзисторов – 2,3 млрд. Первые системы на базе Nehalem-EX ожидаются в начале 2010 г.

1 июня 2009 г. – компания AMD объявила о начале поставок 6-ядерных серверных процессоров Opteron (кодовое название Istanbul ) для систем с двумя, четырьмя и восемью процессорными гнездами. По данным AMD , 6-ядерные процессоры примерно на 50% быстрее по сравнению с серверными процессорами с четырьмя ядрами. Istanbul будет конкурировать с 6-ядерными процессорами Intel Xeon под кодовым названием Dunnington , появившимися в продаже в сентябре 2008 г. Процессор изготавливается с использованием 45-нм технологии, работает на частоте 2,6 ГГц и обладать 6МБ кэш-памяти третьего уровня.

Август 2009 г. – корпорация IBM представила 8-ядерные процессоры Power7 (каждое ядро способно обрабатывать до 4 потоков команд одновременно).

9 сентября 2009 г. Intel представила новые процессоры – Core i7-860 ( 2,8 ГГц) и Core i7-870 (2,93 ГГц) с возможностью повышения тактовой частоты до 3,46 и 3,6 ГГц соответственно (технология Intel Turbo Boost ). Чипы обладают кэш-памятью объемом 8МБ и интегрированным 2-канальным контроллером оперативной памяти DDR3-1333 . Каждый из представленных 4-ядерных процессоров Core i7 может распознаваться системой как 8-ядерный благодаря технологии Hyper-Threading . Кодовое название чипов – Bloomfield , архитектура – Nehalem , техпроцесс – 45 нм.

22 сентября 2009 г. – компания AMD заявила о намерении выпустить первые 6-ядерные центральные процессоры для ПК. Новинки будут базироваться на 6-ядерной архитектуре серверных процессоров AMD Opteron Istanbul , их кодовое обозначение – Thuban . Как и серверные процессоры Istanbul , Thuban будут представлять собой устройства на основе единого кристалла, при этом изготовление интегральных микросхем будет осуществляться по 45-нм техпроцессу. 6-ядерные процессоры, как и их серверные аналоги, будут состоять из 904 млн. транзисторов, при этом площадь микросхемы составит 346 кв. мм. Предположительно, на рынке процессоры появятся под AMD Phenom II X6 .

22 сентября 2009 г. Intel запускает в производство первые в мире процессоры на базе 32-нм технологии (кодовое название чипов –Westmere ). Новые процессоры будут поддерживать технологии Intel Turbo Boost (увеличение тактовой частоты по требованию) и Hyper-Threading (многопоточная обработка), а также новый набор команд Advanced Encryption Standard (AES ) для ускоренного шифрования и дешифровки. Кроме того, Westmere – первые высокопроизводительные процессоры с графическим ядром, интегрированным на одну кремниевую подложку с вычислительными ядрами.

2 декабря 2009 г. – компания Intel представила экспериментальный 48-ядерный процессор (под предварительным названием «одночиповый облачный компьютер»), представляющий собой миниатюрный дата-центр, умещающийся на кремниевом кристалле площадью не больше почтовой марки. Прототип будет использоваться в дальнейших исследованиях многоядерных систем. Благодаря новейшим технологиям управления электропитанием, включая возможность индивидуального отключения ядер и ограничения скорости их работы, в режиме ожидания чип потребляет всего 25 Вт. В режиме максимальной производительности чип расходует 125 Вт.

23 февраля 2010 г. – компания AMD приступила к поставкам 8- и 12-ядерных серверных процессоров Opteron серии 6100 под кодовым названием Magny-Cours . Эти процессоры рассчитаны на установку в сокет G34 . Уровень их TDP варьируется от 85 до 140 Ватт, что, в свою очередь, зависит от частоты каждого из 12-ти ядер (от 1,7 до 2,4 ГГц в зависимости от модели).

Конец февраля 2010 г. Intel начала реализацию 6-ядерных процессоров Core i7-980 Extreme Edition (кодовое название Gulftown ). Выпускается на базе 32-нм технологии. Тактовая частота составляет 3,33 ГГц (в режиме Turbo скорость работы достигает в 3,60 ГГц).

16 марта 2010 г. Intel представила 32-нм 6-ядерные процессоры Xeon 5600 для серверов и настольных систем (могут работать на максимальной частоте 2,93 ГГц при TDP 95 Вт). Процессоры этого семейства обладают функциями безопасности Intel Advanced Encryption Standard New Instruction (AES-NI ) и Intel Trusted Execution Technology (Intel TXT ), предлагающими ускоренное шифрование и дешифровку данных и аппаратную защиту от вредоносного ПО, а также поддерживают технологии Intel Turbo Boost и Hyper-Threading .

28 марта 2010 г. AMD начала поставки первых 8- и 12-ядерных серверных процессоров на архитектуре x86 . Вошедшие в семейство AMD Opteron 6100 и ранее известные как Magny-Cours , новые чипы предназначены для 2- и 4-сокетных систем с интенсивной обработкой данных. В компании утверждают, что новые процессоры позволяют сократить расходы на электроэнергию, теплоотвод и программное обеспечение, стоимость лицензии на которое зависит от числа процессоров в системе. Новые чипы производятся на базе 45-нм техпроцесса. Процессоры состоят из двух кристаллов, каждый из которых содержит по 4 или 6 ядер соответственно. Стоимость чипов варьируется от $266 за 8-ядерный Opteron 6128 с тактовой частотой 1,5 ГГц и энергопотреблением 65 Вт до $1386 за 12-ядерный Opteron 6176 SE с тактовой частотой 2,4 ГГц и потреблением 105 Вт.

31 марта 2010 г. Intel анонсировала 4-, 6- и 8-ядерные серверные чипы Nehalem-EX Xeon 6500 и Xeon 7500 . Среди прочего, новые чипы впервые поддерживают технологию Machine Check Architecture (MCA ) Recovery , позволяющую восстанавливать систему после фатальной системной ошибки, вовлекая в процесс восстановления полупроводниковые компоненты, операционную систему и менеджер .

25 апреля 2010 г. – компания AMD приступила к поставкам 6-ядерных процессоров AMD Phenom II X6 ( кодовое название Thuban ). Тактовая частота модели составляет 2,8 ГГц. Процессоры выполнены по 45-нм техпроцессу, оснащены технологией Turbo Core . Данная технология выбирает, какое число ядер стоит задействовать. В случае если нагрузка небольшая или средняя, задействуется до 3 ядер, частота которых может повышаться (при этом оставшиеся ядра переводятся в режим ожидания). При запуске многопоточных приложений с интенсивным использованием вычислительных ресурсов, процессор открывает доступ к тем ядрам, которые находятся в резерве.

20 июля 2010 г. – компания Intel выпустила новый 6-ядерный процессор Core i7-970 , предназначенный для настольных игровых и рабочих станций. Чип выполнен с использованием 32-нм технологии. Тактовая частота составляет 3,2 ГГц (множитель частоты заблокирован, чтобы запретить разгон процессора).

Сентябрь 2010 г. – компания Oracle официально представила новейшие серверные процессоры с 16-ю ядрами, принадлежащие семейству микрочипов SPARC SPARC T3 . Изготавливаются интегральные микросхемы по 40-нм технологическому процессу, каждое ядро функционирует на частоте 1,65 ГГц.

Декабрь 2010 г. – группа ученых из Университета Глазго и Массачусетского университета в Лоуэлле во главе с Вандербауведе ( Vanderbauwhede ) создала процессор, способный обрабатывать данные со скоростью в 20 раз превышающей скорость работы современных процессоров для настольных систем. Взяв за основу FPGA (программируемую интегральную схему, или так называемую вентильную матрицу), ученые создали процессор с 1000 ядрами, каждое из которых вычисляло отдельный набор команд. Для этого в чипе FPGA предварительно было создано более 1000 логических цепей. Для того чтобы ускорить работу чипа, инженеры оснастили каждое из ядер выделенной памятью.

Возможности процессора были опробованы на обработке файла с применением алгоритма, используемого в MPEG . Процессор справился с этим на скорости 5 ГБ в секунду, что примерно в 20 раз больше в сравнении со скоростью обработки аналогичного файла самыми мощными настольными процессорами.

По словам Вандербауведе, некоторые производители уже начали выпускать гибридные решения, состоящие из центрального процессора и программируемой матрицы. Такой продукт, например, недавно представила Intel . Ученый считает, что в течение нескольких следующих лет FPGA -решения будут встречаться в потребительской электронике чаще, так как они предлагают высокую производительность и обладают низким потреблением энергии.

«Очевидно, что создание процессоров с тысячами ядер возможно, пишет автор статьи в ZDNet Кларк ( Clark ). – В теории даже нет границ по числу ядер. Однако перед созданием таких процессоров нам предстоит ответить на множество вопросов и, прежде всего, на вопрос, нужно ли нам такое число ядер, каким приложениям может потребоваться такая вычислительная мощность…».

Примечания

1. Кодовое название (обозначение, наименование) – это название ядра процессора.

2. Линейка – это модельный ряд процессоров одной серии. В рамках одной линейки процессоры могут значительно отличаться друг от друга по целому ряду параметров.

3. Чип (англ. chip ) – кристалл; микросхема.

4. Под технологическим процессом (техпроцесс, технология, технология производства микропроцессоров) подразумевается размер затвора транзистора. Например, когда мы говорим – 32-нм технологический процесс , – это означает, что размер затвора транзистора составляет 32 нанометра.

5. Канал – это область транзистора, по которой проходит управляемый ток основных носителей заряда.

Исток – это электрод транзистора, из которого в канал входят основные носители заряда.

Сток – это электрод транзистора, через который из канала уходят основные носители заряда.

Затвор – это электрод транзистора, служащий для регулирования поперечного сечения канала.

6. Фактически, транзисторы – это миниатюрные переключатели, с помощью которых реализуются те самые «нули» и «единицы», составляющие основу . Затвор предназначен для включения и выключения транзистора. Во включенном состоянии транзистор пропускает ток, а в выключенном – нет. Диэлектрик затвора расположен под электродом затвора. Он предназначен для изоляции затвора, когда ток проходит через транзистор.

Более 40 лет для изготовления диэлектриков затвора транзистора использовался диоксид кремния (благодаря легкости его применения в массовом производстве и возможности постоянного повышения производительности транзисторов за счет уменьшения толщины слоя диэлектрика). Специалистам Intel удалось уменьшить толщину слоя диэлектрика до 1,2 нм (что равнозначно всего 5 атомарным слоям!) – такой показатель был достигнут в 65-нанометровой технологии производства.

Однако дальнейшее уменьшение толщины слоя диэлектрика приводит к усилению тока утечки через диэлектрик, в результате чего растут потери тока и тепловыделение. Рост тока утечки через затвор транзистора по мере уменьшения толщины слоя диэлектрика из диоксида кремния является одним из самых труднопреодолимых технических препятствий на пути следования . Для решения этой принципиальной проблемы корпорация Intel заменила диоксид кремния в диэлектрике затвора на тонкий слой из материала high-k на основе гафния. Это позволило уменьшить ток утечки более чем в 10 раз по сравнению с диоксидом кремния. Материал high-k диэлектрика затвора несовместим с традиционными кремниевыми электродами затвора, поэтому в качестве второй составляющей «рецепта» Intel для ее новых транзисторов, создаваемых на основе 45-нанометрового техпроцесса, стала разработка электродов с применением новых металлических материалов. Для изготовления электродов затвора транзистора применяется комбинация различных металлических материалов.

7. Приведенная в статье хронология создания не претендует на всеобъемлющий охват.

О твечая на вопрос, на что влияет количество ядер в процессоре, хочется сразу сказать – на производительность компьютера. Но это настолько сильное упрощение, что оно даже в какой-то момент становится ошибкой.

Ладно бы пользователи просто заблуждались и ничего не теряли. Проблема в том, что неправильное понимание сути многоядерности приводит к финансовым потерям. Пытаясь увеличить производительность, человек тратит деньги на процессор с большим количеством ядер, но не замечает разницы.

Многоядерность и многопоточность

Когда мы изучали вопрос, то обратили внимание на особенность процессоров Intel – в стандартных инструментах Windows отображается разное число ядер. Это обусловлено работой технологии Hyper-Threading, которая обеспечивает многопоточность.

Чтобы вы больше не путались в понятиях, разберемся раз и навсегда:

  • Многоядерность – чип оснащен несколькими физическими архитектурными ядрами. Их можно увидеть, потрогать руками.
  • Многопоточность – несколько одновременно обрабатываемых потоков информации.
    Ядро может быть физически одно, но программные технологии на его основе создают два потока выполнения задач; два ядра – четыре потока и т.д.

Влияние количества ядер на производительность

Увеличение производительности на многоядерном процессоре достигается за счет разбиения выполнения задач. Любая современная система делит процесс на несколько потоков даже на одноядерном процессоре – так достигается та самая многозадачность, при которой вы можете, например, слушать музыку, набирать документ и работать с браузером. Очень любят и постоянно используют многопоточность следующие приложения:

  • архиваторы;
  • медиапроигрыватели;
  • кодировщики видео;
  • дефрагментаторы;
  • антивирусы;
  • графические редакторы.

Важен принцип разделения потоков. Если компьютер работает на одноядерном процессоре без технологии Hyper-Threading, то операционная система производит моментальные переключения между потоками, так что для пользователя процессы визуально выполняются одновременно. Все действия выполняются в течение миллисекунд, поэтому вы не видите серьезную задержку, если не нагружаете сильно ЦП.

Если же процессор многоядерный (или поддерживает многопоточность), то в идеале переключений не будет. Система посылает на каждое ядро отдельный поток. В результате увеличивается производительность, потому что нет необходимости переключаться на выполнение другой задачи.

Но есть еще один важный фактор – поддерживает ли сама программа многозадачность? Система может разделить процессы на разные потоки. Однако если вы запускаете очень требовательную игру, но она не оптимизирована под работу с четырьмя ядрами, но никакого прироста производительности по сравнению с двухъядерным процессором не будет.

Разработчики игр и программ в курсе об этой особенности, поэтому постоянно оптимизируют код под выполнение задач на многоядерных процессорах. Но эта оптимизация не всегда успевает за увеличением количества ядер, поэтому не стоит тратить огромные деньги на самые новые мощные процессоры с максимально возможным числом поддерживаемых потоков – потенциал чипа не будет раскрываться в 9 программах из 10.

Так сколько ядер выбирать?

Прежде чем покупать процессор с 16 ядрами, подумайте, потребуется ли такое количество потоков для выполнения задач, которые вы будете ставить перед компьютером.

  • Если компьютер приобретается для работы с документами, серфинга в интернете, прослушивания музыки, просмотра фильмов, то хватит двух ядер. Если взять процессор с двумя ядрами из верхнего ценового сегмента с хорошей частотой и поддержкой многопоточности, то не будет проблем при работе с графическими редакторами.
  • Если вы покупаете машину с расчетом на мощную игровую производительность, то сразу ставьте фильтр на 4 ядра минимум. 8 ядер с поддержкой многопоточности – самый топ с запасом на несколько лет. 16 ядер – перспективно, но велика вероятность, что пока вы раскроете потенциал такого чипа, он устареет.

Как я уже говорил, разработчики игр и программ стараются не отставать от прогресса процессоров, но пока огромные мощности просто не нужны. 16 ядер подойдут пользователям, которые занимаются рендерингом видео или серверными вычислениями. Да, в магазинах такие процессоры называют игровыми, но это только для того, чтобы они продавались – геймеров вокруг точно больше, чем тех, кто рендерит видео.

Преимущества многоядерности можно заметить только при очень серьезной вычислительной работе в несколько потоков. Если, условно, игра или программа оптимизирована только под четыре потока, то даже ваши восемь ядер будут бессмысленной мощностью, которая никак не повлияет на производительность.

Это как перевозить стул на огромной грузовой машине – задача от этого не выполняется быстрее. Но если правильно использовать имеющиеся возможности (например, загрузить кузов полностью другой мебелью), то производительность труда увеличится. Помните об этом и не ведитесь на маркетинговые штучки с добавлением слова «игровой» к процессорам, которые даже на самых последних играх не раскроют весь свой потенциал.

Ещё на сайте:

На что влияет количество ядер процессора обновлено: Январь 31, 2018 автором: admin

Многоядерные процессоры представляют собой центральные процессоры, в которых содержится более двух вычислительных ядер. Такие ядра могут находиться как в одном корпусе, так и на одном процессорном кристалле.

Что такое многоядерный процессор?

Чаще всего под многоядерными процессорами понимают центральные процессоры, в которых несколько вычислительных ядер интегрированы в одну микросхему (то есть они расположены на одном кристалле кремния).

Обычно тактовая частота в многоядерных процессорах намеренно занижается. Это делают для того, чтобы сократить энергопотребление, сохранив при этом требуемую производительность процессора. Каждое ядро при этом представляет собой полноценный микропроцессор, для которого характерны черты всех современных процессоров - он использует многоуровневый кэш, поддерживает внеочередное исполнение кода и векторные команды.

Hyper-threading

Ядра в многоядерных процессорах могут поддерживать технологию SMT, позволяющую исполнять несколько потоков вычислений и создавать на основе каждого ядра несколько логических процессоров. На процессорах, которые выпускает компания Intel, такая технология называется «Hyper-threading». Благодаря ей можно удваивать число логических процессоров по сравнению с числом физических чипов. В микропроцессорах, поддерживающих эту технологию, каждый физический процессор способен сохранять состояние двух потоков одновременно. Для операционной системы это будет выглядеть, как наличие двух логических процессоров. Если в работе одного из них возникает пауза (например, он ждет получения данных из памяти), другой логический процессор приступает к выполнению собственного потока.

Виды многоядерных процессоров

Многоядерные процессоры подразделяются на несколько видов. Они могут поддерживать использование общей кэш-памяти, а могут не поддерживать. Связь между ядрами реализуется на принципах использования разделяемой шины, сети на каналах точка-точка, сети с коммутатором или использования общего кэша.

Принцип работы

Большинство современных многоядерных процессоров работает по следующей схеме. Если запущенное приложение поддерживает многопоточность, оно может заставлять процессор выполнять несколько заданий одновременно. Например, если в компьютере используется 4-ядерный процессор с тактовой частотой 1.8 ГГц, программа может «загрузить» работой сразу все четыре ядра, при этом суммарная частота процессора будет составлять 7.2 ГГц. Если запущено сразу несколько программ, каждая из них может использовать часть ядер процессора, что тоже приводит к росту производительности компьютера.

Многие операционные системы поддерживают многопоточность, поэтому использование многоядерных процессоров позволяет ускорить работу компьютера даже в случае приложений, которые многопоточность не поддерживают. Если рассматривать работу только одного приложения, то использование многоядерных процессоров будет оправданным лишь в том случае, если это приложение оптимизировано под многопоточность. В противном случае, скорость работы многоядерного процессора не будет отличаться от скорости работы обычного процессора, а иногда он будет работать даже медленнее.

Гонку за дополнительную производительность на рынке процессоров могут выиграть только те производители, которые на основе текущих технологий производства смогут обеспечить разумный баланс между тактовой частотой и количеством вычислительных ядер. Благодаря переходу на 90- и 65-нм техпроцессы появилась возможность создавать процессоры с большим числом ядер. В немалой степени это было обусловлено и новыми возможностями регулировки тепловыделения, и размерами ядер, именно поэтому сегодня мы наблюдаем появление всё большего числа четырёхядерных процессоров. Но как насчёт программного обеспечения? Насколько хорошо оно масштабируется от одного до двух или четырёх ядер?

В идеальном мире программы, оптимизированные под многопоточность, позволяют операционной системе распределять несколько потоков по доступным вычислительным ядрам, будь то один процессор или несколько, с одним ядром или с несколькими. Добавление новых ядер позволяет получить больший прирост производительности, чем любой прирост тактовой частоты. Это действительно имеет смысл: большее количество рабочих почти всегда справятся с заданием быстрее, чем меньшее количество более быстрых рабочих.

Но имеет ли смысл оснащать процессоры четырьмя или даже большим числом ядер? Хватит ли работы, чтобы нагрузить четыре ядра или большее их количество? Не стоит забывать, что весьма сложно распределить работу между ядрами, чтобы такие физические интерфейсы, как HyperTransport (AMD) или Front Side Bus (Intel), не стали "узким местом". Есть и третий вариант: механизм, который распределяет нагрузку между ядрами, а именно, диспетчер ОС, может тоже стать "узким местом".

Переход AMD с одного на два ядра прошёл практически безупречно, поскольку компания не увеличивала тепловой пакет до экстремального уровня, как это было у процессоров Intel Pentium 4. Поэтому процессоры Athlon 64 X2 были дорогими, но вполне разумными, а линейка Pentium D 800 прославилась своей горячей работой. Но 65-нм процессоры Intel и, в особенности, линейка Core 2 изменили картину. Intel смогла сочетать два процессора Core 2 Duo в одной упаковке, в отличие от AMD, в результате чего мы и получили современные Core 2 Quad. AMD обещает выпустить до конца этого года свои собственные четырёхядерные процессоры Phenom X4.

В нашей статье мы рассмотрим конфигурацию Core 2 Duo на четырёх ядрах, двух ядрах и на одном ядре. И посмотрим, насколько хорошо масштабируется производительность. Стоит ли сегодня переходить на четыре ядра?

Одно ядро

Под термином "одноядерный" скрывается процессор, который обладает одним вычислительным ядром. Сюда подпадают практически все процессоры с зарождения архитектуры 8086 вплоть до Athlon 64 и Intel Pentium 4. Пока техпроцесс производства не стал достаточно тонким, чтобы создавать два вычислительных ядра на одном кристалле, переход на меньший техпроцесс использовался для снижения рабочего напряжения, увеличения тактовых частот или добавления функциональных блоков и кэш-памяти.

Работа одноядерного процессора на высоких тактовых частотах может дать более высокую производительность для одного приложения, но подобный процессор в один момент времени может выполнять только одну программу (поток). Intel реализовала принцип Hyper-Threading, который эмулирует наличие нескольких ядер для операционной системы. Технология HT позволила лучше загрузить длинные конвейеры процессоров Pentium 4 и Pentium D. Конечно, прирост производительности был невелик, но отзывчивость системы оказалась определённо лучше. А в многозадачном окружении это может быть и важнее, поскольку вы сможете выполнять какую-либо работу, пока ваш компьютер работает над определённой задачей.

Поскольку двуядерные процессоры сегодня стоят очень дёшево, мы не рекомендуем брать одноядерные процессоры, если только вы не хотите экономить каждую копейку.


Процессор Core 2 Extreme X6800 на момент выхода был самым быстрым в линейке Intel Core 2, работая на частоте 2,93 ГГц. Сегодня двуядерные процессоры достигли 3,0 ГГц, правда, при более высокой частоте шины FSB1333.

Переход на два процессорных ядра означает в два раза большую вычислительную мощность, но только на приложениях, оптимизированных под многопоточность. Обычно такие приложения включают профессиональные программы, которым нужна высокая вычислительная мощность. Но двуядерный процессор всё равно имеет смысл, даже если вы используете свой компьютер лишь для электронной почты, просмотра интернет-страниц и работы с офисными документами. С одной стороны, современные модели двуядерных процессоров потребляют не особо больше энергии, чем одноядерные модели. С другой стороны, второе вычислительное ядро не только добавляет производительность, но и улучшает отзывчивость системы.

Вы когда-нибудь ждали, пока WinRAR или WinZIP закончат сжатие файлов? На одноядерной машине вы вряд ли сможете быстро переключаться между окнами. Даже воспроизведение DVD может нагружать одно ядро не меньше, чем сложная задача. Двуядерный процессор позволяет легче справляться с одновременным запуском нескольких приложений.

Двуядерные процессоры AMD содержат два полноценных ядра с кэш-памятью, интегрированным контроллером памяти и кросс-коммутатором, который обеспечивает совместный доступ к памяти и к интерфейсу HyperTransport. Intel пошла путём, схожим с первым Pentium D, установив в физический процессор два ядра Pentium 4. Поскольку контроллер памяти является частью чипсета, системную шину приходится использовать и для связи между ядрами, и для доступа к памяти, что накладывает определённые ограничения на производительность. Процессор Core 2 Duo оснащён более совершенными ядрами, которые дают лучшую производительность на такт и лучшее соотношение производительности на ватт. У двух ядер используется общий кэш L2, который позволяет обмениваться данными без использования системной шины.

Процессор Core 2 Quad Q6700 работает на частоте 2,66 ГГц, используя внутри два ядра Core 2 Duo.

Если сегодня существует много причин, чтобы перейти на двуядерные процессоры, то четыре ядра выглядят пока не так убедительно. Одна из причин заключается в ограниченной оптимизации программ под несколько потоков, но существуют и определённые проблемы в архитектуре. Хотя AMD сегодня критикует Intel за упаковку двух двуядерных кристаллов в одном процессоре, считая это не "настоящим" четырёхядерным CPU, подобный подход Intel работает хорошо, поскольку процессоры действительно обеспечивают четырёхядерную производительность. С точки зрения производства легче получить высокий уровень выхода годных кристаллов и выпускать больше продуктов с небольшими ядрами, которые затем можно соединить вместе для нового, более мощного продукта на новом техпроцессе. Что же касается производительности, то есть "узкие места" - два кристалла взаимодействуют друг с другом через системную шину, поэтому весьма сложно управлять несколькими ядрами, распределёнными на несколько кристаллов. Хотя наличие нескольких кристаллов позволяет обеспечить лучшую экономию энергии и регулировать частоты отдельных ядер для нужд приложения.

Настоящие четырёхядерные процессоры используют четыре ядра, которые, вместе с кэш-памятью, располагаются на одном кристалле. Здесь важно наличие общего унифицированного кэша. AMD будет реализовывать такой подход, оснащая 512 кбайт кэша L2 каждое ядро и добавляя кэш L3 для всех ядер. Преимущество AMD заключается в том, что можно будет выключать отдельные ядра и ускорять другие, чтобы получить более высокую производительность однопоточных приложений. Intel пойдёт тем же путём, но не раньше представления в 2008 году архитектуры Nehalem.

Утилиты вывода системной информации, такие, как CPU-Z, позволяют узнать число ядер и объёмы кэша, но не раскладку процессора. Вы не узнаете, что Core 2 Quad (или четырёхядерный Extreme Edition, показанный на скриншоте) состоит из двух ядер.


Обнаружили неприятную проблему предела тактовой частоты. Достигнув порога в 3 ГГц, разработчики столкнулись с значительным ростом энергопотребления и тепловыделения своих продуктов. Уровень технологий 2004 года не позволял существенно уменьшить размеры транзисторов в кремниевом кристалле и выходом из сложившейся ситуации стала попытка не наращивать частоты, а увеличить количество операций, выполняемых за один такт. Переняв опыт серверных платформ, где многопроцессорная компоновка уже была испытана, было решено объединить два процессора на одном кристалле.

С тех пор прошло немало времени, в широком доступе появились ЦП с двумя, тремя, четырьмя, шестью и даже восемью ядрами. Но основную долю на рынке до сих пор занимают 2 и 4-ядерные модели. Изменить ситуацию пытаются в AMD, но их архитектура Bulldozer не оправдала надежд и бюджетные восьмиядерники все еще не очень популярны в мире. Поэтому вопрос, что лучше: 2 или 4-ядерный процессор , до сих пор остается актуальным.

Разница между 2 и 4-ядерным процессором

На аппаратном уровне основное отличие 2-ядерного процессора от 4-ядерного – количество функциональных блоков. Каждое ядро, по сути, представляет собой отдельный ЦП, оснащенный своими вычислительными узлами. 2 или 4 таких ЦП объединены между собой внутренней скоростной шиной и общим контроллером памяти для взаимодействия с ОЗУ. Другие функциональные узлы тоже могут быть общими: у большинства современных ЦП индивидуальной является кэш-память первого (L1) и второго (L2) уровня, блоки целочисленных вычислений и операций с плавающей запятой. Кэш L3, отличающийся относительно большим объемом, один и доступен всем ядрам. Отдельно можно отметить уже упомянутые AMD FX (а также ЦП Athlon и APU серии A): у них общими являются не только кэш-память и контроллер, но и блоки вычислений с плавающей запятой: каждый такой модуль одновременно принадлежит двум ядрам.

Схема четырехъядерного процессора AMD Athlon

С пользовательской точки зрения разница между 2 и 4-ядерным процессором заключается в количестве задач, которые ЦП может обработать за один такт. При одинаковой архитектуре, теоретическая разница будет составлять 2 раза для 2 и 4 ядер или 4 раза для 2 и 8 ядер, соответственно. Таким образом, при одновременной работе нескольких процессов, увеличение количества должно повлечь за собой рост быстродействия системы. Ведь вместо 2 операций четырехъядерный ЦП за один момент времени сможет выполнять сразу четыре.

Чем обусловлена популярность двухъядерных ЦП

Казалось бы, если увеличение числа ядер влечет за собой рост производительности, то на фоне моделей с четырьмя, шестью или восемью ядрами у двухядерников нет никаких шансов. Тем не менее, мировой лидер на рынке ЦП, компания Intel, ежегодно обновляет ассортимент своей продукции и выпускает новые модели всего с парой ядер (Core i3, Celeron, Pentium). И это на фоне того, что даже в смартфонах и планшетах на такие ЦП пользователи смотрят с недоверием или презрением. Чтобы понять, почему самые популярные модели – именно процессоры с двумя ядрами, следует учесть несколько основных факторов.

Intel Core i3 — самые популярные 2-ядерные процессоры для домашнего ПК

Проблема совместимости . При создании программного обеспечения разработчики стремятся сделать так, чтобы оно могло функционировать как на новых компьютерах, так и уже существующих моделях ЦП и ГП. Учитывая ассортимент на рынке, важно обеспечить, чтобы игра нормально работала и на двух ядрах, и на восьми. Большинство всех существующих домашних ПК оснащены двухъядерным процессором, поэтому поддержке таких компьютеров уделяется больше всего внимания.

Сложность распараллеливания задач . Чтобы обеспечить эффективное задействование всех ядер, вычисления, производимые в процессе работы программы, следует разделить на равные потоки. Например, задача, которая может оптимально задействовать все ядра, выделив каждому из них по одному или два процесса — одновременная компрессия нескольких видеороликов. С играми – сложнее, так как все выполняемые в них операции взаимосвязаны. Несмотря на то, что основную работу выполняет графический процессор видеокарты, информацию для формирования 3d-картинки подготавливает именно ЦП. Сделать так, чтобы каждое ядро обрабатывало свою порцию данных, а затем подавало ее ГП синхронно с другими, достаточно сложно. Чем больше одновременных потоков вычислений нужно обрабатывать – тем тяжелее реализация задачи.

Преемственность технологий . Разработчики программного обеспечения используют для своих новых проектов уже существующие наработки, подвергающиеся неоднократной модернизации. В отдельных случаях доходит до того, что такие технологии уходят корнями в прошлое на 10-15 лет. Разработка, основанная на проекте десятилетней давности, кардинальной переработке для идеальной оптимизации поддается очень неохотно, если не совсем никак. Как следствие, наблюдается неспособность софта рационально использовать аппаратные возможности ПК. Игра S.T.A.L.K.E.R. Зов Припяти, вышедшая в 2009 году (в эпоху расцвета многоядерных ЦП) построена на движке 2001 года, поэтому не умеет нагружать более, чем одно ядро.

S.T.A.L.K.E.R. полноценно задействует только одно ядоро 4-ядерного ЦП

Такая же ситуация и с популярной онлайн-РПГ World of Tanks: движок Big World, на котором она базируется, создан в 2005 году, когда многоядерные ЦП еще не воспринимались, как единственно возможный путь развития.

World of Tanks тоже не умеет распределять нагрузку на ядра равномерно

Финансовые сложности . Следствием этой проблемы является предыдущий пункт. Если создавать каждое приложение с нуля, не используя имеющиеся технологии, его реализация обойдется в баснословные суммы. К примеру, стоимость разработки GTA V составила более 200 млн долларов. При этом, некоторые технологии все равно не были созданы «из чистого листа», а позаимствованы из предыдущих проектов, так как игра писалась под 5 платформ сразу (Sony PS3, PS4, Xbox 360 и One, а также ПК).

GTA V оптимизирована под многоядерность и умеет равномерно загружать процессор

Все эти нюансы не позволяют в полной мере использовать потенциал многоядерных процессоров на практике. Взаимозависимость производителей аппаратного обеспечения и разработчиков софта порождает замкнутый круг.

Какой процессор лучше: 2 или 4-ядерный

Очевидно, что при всех преимуществах потенциал многоядерных процессоров до сих пор остается нереализованным до конца. Некоторые задачи вообще не умеют равномерно распределять нагрузку и работают в один поток, другие – делают это с посредственной эффективностью, и лишь малая доля ПО полноценно взаимодействуют со всеми ядрами. Поэтому вопрос, какой лучше процессор, 2 или 4 ядра , купить, требует внимательного изучения текущей ситуации.

На рынке представлены продукты двух производителей: Intel и AMD, отличающиеся особенностями реализации. Advanced Micro Devices традиционно делают упор на многоядерность, в то время как «Интел» неохотно идут на такой шаг и наращивают количество ядер только если это не приводит к снижению удельной производительности в расчете на ядро (избежать которого очень сложно).

Увеличение количества ядер снижает итоговую производительность каждого из них

Как правило, общая теоретическая и практическая производительность многоядерного ЦП ниже, чем аналогичного (построенного на такой же микроархитектуре, с тем же техпроцессорм) с одним ядром. Вызвано это тем, что ядра используют общие ресурсы, и это не лучшим образом сказывается на быстродействии. Таким образом, нельзя просто приобрести мощный четырех- или шестиъядерный процессор с расчетом на то, что он точно не будет слабее двухъядерника из той же серии. В некоторых ситуациях – будет, при том ощутимо. В качестве примера можно привести запуск старых игр на компьютере с восьмиядерным процессором AMD FX : FPS при этом порой ниже, чем на аналогичном ПК, но с четырехъядерным ЦП.

Нужна ли сегодня многоядерность

Значит ли это, что много ядер не нужно? Несмотря на то, что вывод кажется закономерным — нет. Легкие повседневные задачи (такие как веб-серфинг или работа с несколькими программами одновременно) положительно реагируют на увеличение числа ядер процессора. Именно по этой причине производители смартфонов делают упор на количество, опуская на второй план удельную производительность. Opera (и другие браузеры на движке Chromium), Firefox запускают каждую открытую вкладку в виде отдельного процесса, соответственно, чем больше ядер – тем быстрее переход между вкладками. Файловые менеджеры, офисные программы, проигрыватели – сами по себе не являются ресурсоемкими. Но при потребности часто переключаться между ними многоядерный процессор позволит повысить производительность системы.

Браузер Opera каждой вкладке присваивает отдельный процесс

В компании Intel осознают это, потому технология HuperThreading, позволяющая ядру обрабатывать второй поток силами неиспользуемых ресурсов, появилась еще во времена Pentium 4. Но она не позволяет в полной мере компенсировать недостаток производительности.

В «Диспетчере задач» 2-ядерный процессор с Huper Threading отображается, как 4-ядерный

Создатели игр, тем временем, постепенно наверстывают упущенное. Появление новых поколений консолей Sony Play Station и Microsoft Xbox простимулировало разработчиков уделять больше внимания многоядерности. Обе приставки созданы на базе восьмиядерных чипов AMD, поэтому теперь программистам не нужно тратить уйму сил на оптимизацию при портировании игры на ПК. С ростом популярности этих консолей — с облегчением смогли вздохнуть и те, кто разочаровался в приобретении AMD FX 8xxx. Многоядерники усиленно отвоевывают позиции на рынке, о чем можно убедиться на примере обзоров.

Понравилась статья? Поделиться с друзьями: