Изучение нюансов разгона процессоров AMD Kaveri. Лучшие программы для разгона процессора AMD ⇡ Технология Dual Graphics

Производительность нового гибридного процессора A10-7850K сравнивалась со скоростью работы его прямого конкурента — Core i5-4440, интеловского предложения аналогичной стоимости, построенного на базе новейшего дизайна Haswell. Попутно по скорости работы флагманской модели Kaveri мы сравнивали и со старшей модификацией Richland, A10-6800K. Также в число результатов тестов добавлены показатели производительности рассмотренного нами ранее A8-7600: этот процессор по сравнению с A10-7850K имеет более низкую тактовую частоту и снабжён урезанным графическим ядром, построенным на базе 384 шейдерных процессоров.

В результате набор тестового оборудования приобрёл следующий вид:

  • Процессоры:
    • AMD A10-7850K (Kaveri, 4 ядра, 3,7-4,0 ГГц, 2x2 Мбайт L2, Radeon R7 Series);
    • AMD A10-6800K (Richland, 4 ядра, 4,1-4,4 ГГц, 2x2 Мбайт L2, Radeon HD 8670D);
    • AMD A8-7600 (Kaveri, 4 ядра, 3,3-3,8 ГГц, 2x2 Мбайт L2, Radeon R7 Series);
    • Intel Core i5-4440 (Haswell, 4 ядра, 3,1-3,3 ГГц, 4x256 Кбайт L2, 6 Мбайт L3, HD Graphics 4600).
    • Процессорный кулер: Noctua NH-U14S.
  • Материнские платы:
    • ASRock FM2A88X Extreme6+ (Socket FM2+, AMD A88X);
    • Gigabyte Z87X-UD3H (LGA1150, Intel Z87 Express).
  • Память: 2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX).
  • Графические карты:
    • AMD Radeon HD 7750 (2 Гбайт/128-бит GDDR5, 900/4500 МГц);
    • AMD Radeon R7 250 (2 Гбайт/128-бит GDDR5, 1000/4600 МГц);
    • NVIDIA GeForce GTX 780 Ti (3 Гбайт/384-бит GDDR5, 876-928/7000 МГц).
  • Дисковая подсистема: Crucial m4 256 Гбайт (CT256M4SSD2).
  • Блок питания: Corsair AX760i (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Enterprise x64 с использованием следующего комплекта драйверов:

  • AMD Chipset Drivers 13.12;
  • AMD Catalyst Graphics Driver 14.1 beta 1.6;
  • Intel Chipset Driver 9.4.0.1027;
  • Intel® Iris and HD Graphics Driver 15.33.8.64.3345;
  • Intel Management Engine Driver 9.5.0.1345;
  • Intel Rapid Storage Technology 12.9.0.1001;
  • NVIDIA GeForce 332.21 Driver.

⇡ Производительность с дискретной графикой

В первую очередь мы тестируем процессоры в платформах с установленной производительной дискретной видеокартой. Такая конфигурация позволяет сравнивать x86-производительность различных архитектур и даёт информацию о том, насколько те или иные CPU подходят для работы в составе производительных систем, где внешние видеокарты верхнего ценового диапазона устанавливаются в обязательном порядке. В этом случае графическое ядро процессоров задействовать невозможно, и оно деактивируется.

Следует подчеркнуть, что в контексте изучения A10-7850K такое тестирование имеет прямой практический смысл. AMD отказалась от дальнейшего развития своих процессоров серии FX, поэтому роль CPU для систем с дискретной графикой постепенно перейдёт к Kaveri или к их последователям.

Futuremark PCMark 8 2.0

По традиции в первую очередь для измерения производительности мы пользуемся интегральным тестом PCMark 8 2.0, который моделирует различные варианты типовой нагрузки на систему. Рассматриваются три сценария: Home — обычное домашнее использование ПК, Creative — использование ПК для развлечений и для работы с мультимедийным контентом и Work — использование ПК для типичной офисной работы.

Если вы читали наш предыдущий материал о процессорах Kaveri, то приведённые результаты не станут для вас неожиданностью. Да, вычислительная производительность ядер Steamroller невысока, поэтому четырёхъядерный Kaveri сильно отстаёт от младшего четырёхъядерного Haswell. Это было вполне ожидаемо, поэтому гораздо более сильное удивление способен вызвать тот факт, что A10-7850K отстаёт не только от Haswell, но и от A10-6800K поколения Richland. Очевидно, микроархитектурных улучшений Steamroller категорически не хватает для того, чтобы скомпенсировать понизившуюся тактовую частоту этого процессора. В результате старая модель APU оказывается быстрее новой на 3-4 процента.

Забавно, что, оправдывая достаточно большую установленную на A10-7850K цену, сама AMD ссылается на высокие показатели этого процессора именно в PCMark 8. Дело в том, что AMD имеет в виду результаты со включённым OpenCL-ускорением, но в случае использования дискретной видеокарты им воспользоваться невозможно, что и приводит к той печальной картине, которая отображена на приведённых диаграммах.

Производительность в приложениях

В Adobe Photoshop CC проводится тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений с цифровой камеры.

В Autodesk 3ds max 2014 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Space_Flyby из тестового пакета SPEC.

В Мaxon Cinebench R15 проводится измерение быстродействия фотореалистичного трёхмерного рендеринга в анимационном пакете CINEMA 4D. Применяемая в бенчмарке сцена содержит порядка 2 тысяч объектов и состоит из 300 тысяч полигонов.

Тестирование скорости архивации измеряется в WinRAR 5.0. Здесь тестируется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. При этом используется максимальная степень компрессии.

Для тестирования скорости транскодирования видео в формат H.264/AVC мы пользуемся широко распространённым кодеком x264 версии r2358. Для оценки производительности используется исходный 1080p@50fps AVC-видеофайл из бенчмарка x246 FHD Benchmark 1.0.1, имеющий битрейт около 30 Мбит/с.

Отставание A10-7850K от похожего по стоимости Core i5-4440 составляет от 30 до 70 процентов. Иными словами, выбор процессоров семейства Kaveri для использования в составе систем с дискретной видеокартой смысла не имеет вообще. Даже более дешёвый A10-6800K, относящийся к прошлому поколению APU, зачастую способен предложить более высокую скалярную вычислительную производительность.

Производительность в играх

Тестирование в играх мы провели с использованием Full HD-разрешения и высоких настроек качества. Наша высокопроизводительная дискретная видеокарта GeForce GTX 780 Ti позволяет увидеть существенные различия в процессорной скорости даже в этом случае. Используемые настройки:

  • Batman — Arkham Origins: разрешение 1920x1080, Anti-Aliasing = MSAA 4x, Geometry Details = DX11 Enhanced, Dynamic Shadows = DX11 Enhanced, Motion Blur = On, Depth of Field = DX11 Enhanced, Distortion = On, Lens Flares = On, Light Shafts = On, Reflections = On, Ambient Occlusion = DX11 Enhanced, Hardware Accelerated Physx = High.
  • Civilization V: Brave New World: разрешение 1920х1080, Antialiasing = 4xMSAA, High-Detail Strategic Vie = On, GPU Texture Decode = On, Overlay Detail = High, Shadow Quality = High, Fog of War Quality = High, Terrain Detail Level = High, Terrain Tesselation Level = High, Terrain Shadow Quality = High, Water Quality = High, Texture Quality = High. Используется DirectX 11-версия игры.
  • F1 2013: разрешение 1920x1080, Ultra Quality, 4xAA, DirectX11. Используется трасса Texas и версия игры с поддержкой AVX-инструкций.
  • Metro: Last Light: разрешение 1920x1080: DirectX 11, High Quality, Texture Filtering = AF 16X, Motion Blur = Normal, SSAA = On, Tesselation = On, Advanced PhysX = On. При тестировании используется сцена D6.

Полученные в игровых тестах результаты ещё раз подтверждают всё сказанное выше. Вычислительная производительность A10-7850K не лучше, чем у A10-6800K. Процессор поколения Richland, хоть и основывается на микроархитектуре Piledriver, а не Steamroller, имеет на 10 процентов более высокую тактовую частоту и более агрессивную технологию турбо. Этого вполне хватает, чтобы обеспечить большее количество кадров в секунду в играх при использовании дискретной видеокарты.

Поэтому нет ничего удивительного и в том, что A10-7850K не сравним по игровому быстродействию с Core i5-4440. Интеловский четырёхъядерник выдаёт куда более высокие показатели производительности в играх, так что для производительных геймерских систем платформа Socket FM2+ совершенно не подходит. Впрочем, это вряд ли стало для кого-то неожиданностью: с невысокой игровой производительностью процессоров AMD мы сталкиваемся каждый раз, когда речь заходит о носителях микроархитектуры Bulldozer или её последователей.

Steamroller против Piledriver

Полученные в вычислительных тестах результаты заставляют задаться вопросом, насколько же в действительности микроархитектура Steamroller прогрессивнее своей предшественницы. AMD утверждала, что рост производительности при постоянной тактовой частоте составит 15-20 процентов. Но практические результаты явно говорят о том, что внедрённые усовершенствования зачастую не компенсируют 10-процентное снижение тактовой частоты. Поэтому мы решили посмотреть, насколько Kaveri будет быстрее Richland, при условии их тактования на одинаковой частоте.

В следующей таблице приводятся результаты тестов, проведённых с процессорами A10-7850K и A10-6800K, частота которых была принудительно установлена на отметке 4,0 ГГц.

Kaveri 4,0 ГГц Richland 4,0 ГГц Преимущество Steamroller
PCMark 8 2.0, Home 2937 2873 +2,2 %
PCMark 8 2.0, Work 2825 2796 +1,0 %
PCMark 8 2.0, Creative 2990 2894 +3,3 %
WinRAR 5.0, секунды 204,8 197,3 -3,7 %
Photoshop CC, секунды 150,3 157,5 +4,8 %
3ds max 2014, секунды 248 339 +36,7 %
x264 (r2358), fps 15,1 12,92 +16,9 %
Cinebench R15 336,8 310,8 +8,4 %
Metro: Last Light, 1920x1080 SSAA HQ 45,8 43,1 +6,3 %
Civilization V, 1920x1080 4xAA HQ 56,3 53,7 +4,8 %
F1 2013, 1920x1080 4xAA UHQ 72,5 75,8 -4,4 %
Batman: Arkham Origins, 1920x1080 4xAA UHQ 75 71,1 +5,5 %

Соотношение между производительностью Steamroller и Piledriver оказывается очень неоднородным. В лучшем случае преимущество новой микроархитектуры превышает 35 процентов, а в худшем — она проигрывает до 4 процентов. Среднее же значение превосходства Kaveri над Richland в производительности на одинаковой тактовой частоте составляет около 7 процентов.

Характер полученных результатов позволяет сделать однозначный вывод, что в первую очередь превосходство Steamroller над Piledriver выявляется на многопоточных алгоритмах, задействующих целочисленные инструкции. Иными словами, выполненное в Steamroller разделение общего на двухъядерный модуль декодера инструкций вместе с другими оптимизациями позволило поднять эффективность работы целочисленных исполнительных устройств. Поэтому задачи вроде трёхмерного рендеринга или перекодирования видео получили очень заметный прирост в скорости выполнения. В том же случае, когда приложения активно используют всё ещё разделяемый блок операций с вещественными числами или SIMD-инструкции, прирост производительности оказывается заметно меньше.

Наблюдающееся же в отдельных случаях падение производительности, похоже, связано с ухудшением скоростных характеристик контроллера памяти, который у Kaveri создаёт бо льшую латентность при обращениях, чем у Richland.

Kaveri 4,0 ГГц

Richland 4,0 ГГц

Причины этого эффекта, вероятно, состоят в том, что контроллер памяти Kaveri на уровне архитектуры спроектирован универсальным и, помимо двух DDR3-каналов, имеет два дополнительных канала с поддержкой GDDR5-памяти. У имеющихся на данный момент моделей процессоров эта функциональность заблокирована, но её потенциальное наличие, как показывают тесты, несколько тормозит работу всей подсистемы памяти.

⇡ Производительность интегрированного графического ядра

Игровая производительность

То, что традиционная вычислительная производительность A10-7850K не столь высока, как того хотелось бы, ещё ничего не значит. Просто не надо рассматривать этот процессор в качестве возможной основы системы, оснащённой дискретной видеокартой, — он для этого совершенно не годится. Его сильная сторона в другом: Kaveri может позволить обойтись вообще без какой-либо видеокарты. Встроенное в него графическое ядро семейства Radeon R7 нацеливается на то, чтобы предложить достойную для игровых систем производительность.

Говоря о возможностях встроенной в A10-7850K графики, AMD подчёркивает, что она быстрее, чем графические карты, установленные в 35 процентов игровых компьютеров (по данным Steam).

Благодаря этому данный гибридный процессор может обеспечить достаточно высокий уровень графической производительности (больше 30 кадров в секунду в Full HD-разрешении) не только в большинстве сетевых игр, но и в популярных однопользовательских играх.

Однако начать тестирование графической производительности видеоядра процессора A10-7850K мы решили с традиционного бенчмарка 3DMark Professional Edition 1.2. Результаты этого гибридного процессора сопоставлялись с показателями не только интегрированной графики A10-6800K, A8-7600 и Core i5-4440, но и дискретных видеоускорителей Radeon HD 7750 и Radeon R7 250.

Превосходство графического ядра A10-7850K над всеми остальными вариантами интегрированной графики очевидно. Благодаря новой архитектуре GCN 1.1 и увеличенному до 512 числу шейдерных процессоров рассматриваемый APU заметно превосходит по скорости как старший Richland, так и Haswell. Фактически A10-7850K на данный момент действительно предлагает самую производительную интегрированную графику для настольных компьютеров.

Однако, несмотря на это, A10-7850K всё-таки не дотягивает по своему результату до показателей графических карт Radeon HD 7750 и Radeon R7 250. Проблема встроенной в APU графики известна давно: недостаточно высокая пропускная способность подсистемы памяти ограничивает её производительность. Поэтому A10-7850K не только заметно отстаёт от Radeon HD 7750 с 512 шейдерными процессорами, но и проигрывает даже Radeon R7 250, у которого число шейдерных процессоров ограничено 384. Дискретные видеокарты оснащаются GDDR5 с пропускной способностью свыше 70 Гбайт/с, используемая же в платформе Socket FM2+ двухканальная память DDR3-2133 может предложить полосу пропускания лишь на уровне 34 Гбайт/с.

Впрочем, давайте посмотрим, что происходит в реальных играх.

В многопользовательском шутере Battlefield 4 интегрированная графика процессора A10-7850K, как и обещала AMD, оказывается способной обеспечить в Full HD-разрешении комфортное количество кадров в секунду даже при средних настройках качества. Превосходство над старшим Richland составляет 16-18 процентов, а над Haswell — достигает 70 процентов. Однако любителям поиграть при высоком качестве изображения всё-таки придётся снизить разрешение где-то до уровня 720p. К сожалению, графика A10-7850K не может предложить сравнимый с показателями Radeon HD 7750 и Radeon R7 250 уровень быстродействия: эти видеокарты быстрее на 35-40 процентов.

Популярный шутер Crysis 3 отличается высокими требованиями к производительности графического ускорителя, и здесь мы сталкиваемся с тем, что A10-7850K не может выдать приемлемую производительность в Full HD даже при минимальном качестве изображения. Очевидно, обладателям игровых систем на базе A10-7850K придётся в некоторых случаях разрешение снижать. Например, в том же Crysis 3 30 кадров в секунду при среднем качестве изображения можно получить лишь в разрешении 720p. Надо заметить, что видеокарты Radeon HD 7750 и Radeon R7 250 от такой проблемы избавлены.

Гоночный симулятор F1 2013 не отличается высокими требованиями к производительности графической подсистемы, поэтому, имея платформу на базе A10-7850K, в Full HD в него можно играть даже с высоким качеством изображения. Преимущество старшего Kaveri перед Richland здесь составляет 25-30 процентов.

Ещё одна требовательная к мощности графики игра, помимо Crysis 3, — это шутер Metro: Last Light. Обладая конфигурацией на базе A10-7850K без дискретного видеоускорителя, комфортно поиграть в него в Full HD-разрешении не удастся даже при минимальных настройках, а при среднем качестве разрешение придётся понижать до 720p. Стодолларовые дискретные видеокарты Radeon HD 7750 и Radeon R7 250 предлагают на 30-40 процентов более высокую производительность и неплохо справляются с отображением Metro: Last Light в недоступном для A10-7850K разрешении 1920x1080. Иными словами, говорить о Kaveri как о процессоре, встроенный графический движок которого способен обеспечить возможность установки Full HD-разрешения в любых играх, совершенно неправомерно.

В приключенческом боевике от третьего лица Tomb Raider производительность графической составляющей A10-7850K находится на неплохом уровне. В разрешении 1920x1080 возможна установка среднего качества изображения, при этом превосходство над Richland составляет 7-15 процентов. Графическое ядро GT2 процессора Haswell отстаёт от графики A10-7850K на внушительные 50-75 процентов, делая любые десктопные интеловские предложения плохим вариантом для использования в игровых системах, опирающихся на встроенные в CPU графические ядра.

Кстати, хочется обратить внимание на один любопытный момент: A10-7850K демонстрирует лишь слегка более высокое быстродействие, чем A8-7600, несмотря на то, что количество шейдерных процессоров в старшем APU на треть больше. Это — ещё одна иллюстрация к тому, что производительность интегрированных ядер AMD упёрлась совсем не в их графические ресурсы, а в пропускную способность памяти. Поэтому то, что Radeon HD 7750 и Radeon R7 250, оснащённые 128-битной GDDR5-памятью, выдают на 35-40 процентов более высокий FPS, удивлять не должно.

AMD отдельно напирает на то, что интегрированные системы, построенные на её процессорах, могут стать хорошим выбором для поклонников сетевых Free-to-play- игр. Наши тесты в многопользовательском боевом авиационном аркадном симуляторе War Thunder это всецело подтверждают. Обладатели конфигураций с процессором A10-7850K смогут комфортно играть в эту игру в Full HD-разрешении при выборе высокого качества изображения. Выгодно смотрятся тут и другие процессоры AMD. Интеловский же Haswell с графическим ядром GT2 подобный уровень производительности обеспечить не в состоянии.

В то же время самая популярная многопользовательская игра World of Tanks предъявляет к производительности графической подсистемы более высокие требования. Для получения комфортной частоты кадров в разрешении 1920x1080 обладателям A10-7850K в ней придётся снизить качество до среднего. И кстати, старший Kaveri тут не обеспечивает заметных преимуществ по сравнению с Richland — вероятно, причина кроется в высокой процессорозависимости данной игры. Впрочем, как бы то ни было, гибридный процессор A10-7850K — вполне достойный выбор для системы преданного поклонника танков. Однако дискретные графические карты с ценой порядка 100 долларов и здесь, как и в других случаях, позволяют получить на 30-35 процентов более высокую производительность.

⇡ Влияние частоты памяти

То, что внешние видеокарты с аналогичной A10-7850K конфигурацией графического ядра обладают заметно более высоким быстродействием, а также то, что разница в практической скорости графики у A10-7850K и A8-7600 достигает лишь 5-10 процентов, явно указывает на главное узкое место в графической производительности — скорость подсистемы памяти. Совершенно очевидно, что для повышения производительности работы встроенной в Kaveri графики нужна более быстрая память. AMD планировала наделить Kaveri поддержкой более скоростных, чем DDR3, типов SDRAM, но что-то пошло не так, и финальные версии десктопных процессоров, хотя и перешли на новую платформу Socket FM2+, оказались совместимы лишь с традиционной DDR3 SDRAM.

Это значит, что нарастить скорость подсистемы памяти в Kaveri можно лишь использованием более скоростных модулей DDR3. Формально эти процессоры поддерживают модули с частотой до DDR3-2133, и именно с такой памятью мы и проводили тесты. Однако, как показала практика, в системы с A10-7850K можно устанавливать и DDR3-2400. О том, какой прирост производительности можно получить в этом случае, мы и поговорим ниже. А заодно посмотрим, насколько потеряет в своей скорости A10-7850K, если систему с ним комплектовать не DDR3-2133, а более медленными модулями.

Приведённые диаграммы вряд ли нуждаются в подробных комментариях. Они очень наглядно указывают на то, насколько важна для Kaveri быстрая память. Переход с DDR3-2133 на DDR3-2400 позволяет получить заметный прирост быстродействия — порядка 5 процентов. Если же в системе с A10-7850K использовать не DDR3-2133, а, например, ширпотребную DDR3-1600, то потери в игровом быстродействии будут доходить до 20 процентов. Иными словами, собирая недорогую геймерскую систему с A10-7850K, экономить на памяти явно не следует.

⇡ Программный интерфейс Mantle

Как и графические карты поколения Volcanic Islands, процессоры Kaveri, основанные на той же архитектуре GCN, обладают поддержкой нового графического программного интерфейса Mantle. Это название давно будоражит умы обладателей новых видеокарт AMD, так как внедрение данного интерфейса обещает достаточно серьёзное увеличение производительности в играх. Аналогично дело обстоит и с Kaveri: внедрение Mantle может стать ещё одним способом более полного раскрытия потенциала встроенного графического ядра. Будучи хорошо осведомлённым об аппаратных тонкостях APU, Mantle предлагает специально оптимизированную прослойку между игровым движком и аппаратными ресурсами вычислительных и графических ядер. Подобный низкоуровневый программный интерфейс давно используется в игровых консолях, и там он показывает очень хорошие результаты. Поэтому широкое внедрение Mantle в современных играх способно поднять привлекательность Kaveri для экономных геймеров.

Для систем, построенных на базе процессоров Kaveri, Mantle не только реализует разнообразные низкоуровневые оптимизации, но и осуществляет более равномерное распределение нагрузки, создаваемой графическим драйвером, по x86-ядрам процессора. Однако следует иметь в виду, что в наибольшей степени Mantle эффективен тогда, когда игровая производительность упирается в скорость вычислительных ресурсов процессора, а в конфигурациях, использующих интегрированные видеоядра, ситуация обычно обратна: узким местом выступают мощности GPU и пропускная способность шины памяти. Тем не менее в момент представления Kaveri AMD говорила о возможном росте производительности, который можно получить за счёт фирменного API, — этот рост в реальных играх якобы достигает 45-процентной величины.

На данный момент у AMD уже готов бета-драйвер версии 14.1, поддерживающий Mantle, и существует игра — Battlefield 4, способная использовать этот программный интерфейс. Естественно, мы протестировали, как включение Mantle сказывается на частоте кадров в том случае, когда для запуска Battlefield 4 используется геймерская система с интегрированной графикой, построенная на базе процессора A10-7850K.

Никакими 45 процентами прироста тут и не пахнет. Увеличение количества кадров в секунду в Battlefield 4 в системе, основанной на A10-7850K, не превышает единиц процентов. Как известно, максимальный прирост активация Mantle даёт в системах со слабым процессором и мощной графической картой, а в случае с A10-7850K соотношение производительности вычислительных ядер и GPU — обратное.

В то же время от включения Mantle в системе на базе A10-7850K есть и заметный негативный эффект. Просто смотреть надо не на средний, а на минимальный FPS.

Минимальный FPS при задействовании Mantle по сравнению с DirectX заметно падает, то есть фирменный программный интерфейс AMD ухудшает плавность игры без каких-либо к тому предпосылок. Возможно, проблема кроется в том, что на данный момент драйвер Mantle находится в бета-стадии. Хочется верить, что AMD ещё внесёт в него какие-то изменения, которые смогут исправить низкий минимальный FPS и дополнительно поднимут скорость работы Battlefiled 4 через Mantle в системах, построенных на APU компании.

⇡ Технология Dual Graphics

Каждый раз, когда дело касается тестирования встроенной процессорной графики, компания AMD предъявляет свой уникальный козырь — технологию Dual Graphics. Эта продвигаемая со времён Llano технология позволяет формировать ассиметричные CrossFire-конфигурации с участием встроенного в процессор графического ядра. Не обошла она стороной и Kaveri. Интегрированное видеоядро процессора A10-7850K, относящееся к серии Radeon R7, может быть «спарено» с любой дискретной видеокартой того же семейства Radeon R7, установленной в слот PCI Express. Ранее считалось, что на архитектуру таких видеокарт накладываются определённые ограничения, но на самом деле никаких рамок нет: вместе с A10-7850K в режиме Dual Graphics может работать любая графическая карта Radeon R7 с архитектурой GCN.

Причём с выпуском Kaveri и выходом драйвера Catalyst 14-й версии AMD наконец-то удалось решить давнюю проблему с тиарингом (разрывами кадров) выводимого изображения, которая напрямую затрагивала Dual Graphics-конфигурации. Теперь технология Dual Graphics работает значительно лучше и не вызывает никаких неприятных артефактов, поэтому её вполне можно рассматривать в качестве одного из путей увеличения графической производительности.

Для ознакомления с работой Dual Graphics в системе на базе Kaveri мы протестировали производительность комбинации A10-7850K и графической карты Radeon R7 250 с GDDR5-памятью.

Максимальный прирост быстродействия технология Dual Graphics обещает в том случае, если производительность процессорной графики и дискретной видеокарты примерно одинакова. Поэтому самой выгодной парой для A10-7850K AMD называет Radeon R7 240. Radeon R7 250 же дороже и быстрее, поэтому встроенная в процессор графика помогает ему не слишком сильно: увеличение производительности по сравнению с одиночной видеокартой составляет от 35 до 45 процентов.

При этом технология Dual Graphics так и не лишилась своих ограничений, которые во многих случаях ставят её полезность под вопрос. Как можно видеть по результатам, положительный эффект она даёт далеко не всегда. Существует огромное число игр, которые не только не получают прирост от Dual Graphics, но и, напротив, начинают выдавать меньшую частоту кадров. Связано это как с отсутствием необходимых оптимизаций драйвера, так и с тем, что в ряде случаев Dual Graphics вообще не включается на программном уровне. Например, эта технология может ускорять исключительно игры, работающие через DirectX 10/11, но не DirectX 9. Иными словами, масштабируемость, которую может предложить Dual Graphics, совершенно не впечатляет.

⇡ Гетерогенная производительность

Наряду с игровыми приложениями графическое ядро процессоров Kaveri могут использовать для ускорения вычислений и обычные приложения общего назначения. Как уже говорилось, с выходом Kaveri компания AMD внедряет архитектуру HSA, делающую шейдерные кластеры графического ядра самостоятельными структурными единицами и упрощающую тем самым программирование и использование для вычислений параллельных шейдерных процессоров. Однако внедрение HSA и заточенного под эту архитектуру фреймворка OpenCL 2.0 — дело отдалённого будущего, пока же AMD даже не может предложить необходимого для включения данной технологии драйвера. Зато поддержка OpenCL 1.1 в Kaveri, как и в других разновидностях современных процессоров с интегрированной графикой, превосходно работает, и поддерживающие OpenCL приложения могут переносить часть своей вычислительной работы на шейдерные конвейеры через этот программный интерфейс.

База программных продуктов, способных задействовать гетерогенные возможности гибридных процессоров, неуклонно растёт и сегодня включает внушительное число популярных программ.

Предстоящее внедрение HSA должно расширить этот список, тем не менее стоит заметить, что ускорить за счёт использования параллельных процессоров графического ядра можно всё-таки не любые алгоритмы. В качестве применений, где использование гибридных возможностей APU может иметь практический смысл, AMD называет задачи распознавания образов, анализ биометрических параметров, системы дополненной реальности, задачи кодирования, редактирования и перекодирования аудио и видео, а также поиск и индексирование мультимедийных данных.

В идеале, мы бы не хотели прибегать к отдельным тестам производительности в задачах, использующих OpenCL. Было бы гораздо лучше, если бы поддержка гетерогенных процессоров появилась в общеупотребительных приложениях, в том числе и тех, которые мы используем для обычного тестирования. Однако такого пока нет: гибридные вычисления внедрены далеко не везде, причём в подавляющем числе случаев OpenCL-ускорение применяется лишь для реализации каких-то конкретных функций, и, чтобы его увидеть, необходимо придумывать специальные тесты. Поэтому исследование гетерогенной производительности и стало отдельной и независимой частью нашего материала.

Первым и наиболее известным тестом OpenCL-производительности выступает бенчмарк Luxmark 2.0, который построен на базе рендера LuxRender, использующего физическую модель распространения света. Для оценки гетерогенной производительности процессоров мы используем сцену средней сложности Sala, а её рендеринг выполняем с задействованием как графических, так и x86-ядер.

Как нетрудно заметить, подключение к работе вычислительных ресурсов графических ядер приводит к серьёзному увеличению производительности, но качественно меняет не слишком многое. Процессоры Intel, как и APU компании AMD, вполне способны предложить похожую функциональность: их современные модификации поддерживают OpenCL 1.1 полноценно и без каких-либо ограничений. Поэтому при использовании мощности графического ядра старший Kaveri сохраняет своё отставание от четырёхъядерного Haswell. Оно здесь не столь катастрофично, как в задачах, опирающихся лишь на x86-ядра, но тем не менее A10-7850K полноценным конкурентом для Core i5-4440 не выглядит.

Ещё один тест, активно задействующий ресурсы графических ядер, это SVPMark 3. Он измеряет производительность системы при работе с пакетом SmoothVideo Project, направленным на повышение плавности воспроизведения видео путём добавления в видеоряд новых кадров, которые содержат промежуточные положения объектов.

На диаграмме можно увидеть производительность процессоров как без задействования ресурсов их графических ядер, так и после включения GPU-ускорения. Достаточно любопытно, что заметное ускорение при этом получает не только Kaveri, но и Haswell. Так, задействование OpenCL поднимает производительность A10-7850K на 48 процентов, а Core i5-4440 ускоряется на 33 процента. Если же учесть, что Core i5 может предложить четыре x86-ядра с более высокой удельной производительностью, в конечном итоге гетерогенное быстродействие A10-7850K и Core i5-4440 устанавливается примерно на одинаковом уровне.

Одним из самых значительных достижений концепции APU, свидетельствующих о её принятии рынком программного обеспечения, стало появление поддержки OpenCL в популярном архиваторе WinZIP. Поэтому измерение скорости архивации в WinZIP 18 мы обойти стороной не могли. В целях тестирования сжатию подвергалась папка с распакованным дистрибутивом Adobe Photoshop CC.

WinZIP хорошо иллюстрирует тезис о том, что ускорению за счёт переноса нагрузки на графические ядра можно подвергнуть далеко не все алгоритмы. Хотя формально WinZIP имеет поддержку OpenCL, в реальности параллельные графические ядра подключаются к работе лишь при сжатии файлов объёмом более 8 Мбайт. Более того, особого выигрыша в скорости от этого нет, поэтому разница в производительности гибридных процессоров со включённым и отключённым OpenCL минимальна. Соответственно, более высокое быстродействие здесь во всех случаях показывает интеловский четырёхъядерный Haswell.

Формальная поддержка OpenCL появилась и в популярном графическом редакторе Adobe Photoshop CC. Правда, на самом деле гетерогенные возможности APU используются лишь в работе нескольких фильтров. В частности, AMD рекомендует измерять производительность при выполнении операции Smart Sharpen, что мы и проделали с 24-мегапиксельным изображением.

Прирост скорости работы фильтра Smart Sharpen, который можно получить при вовлечении в работу графической части современных процессоров, впечатляет. Данная операция начинает выполняться в системе с A10-7850K на 90 процентов быстрее, а в системе с Core i5-4440 — быстрее на 45 процентов. Иными словами, на примере фильтра Smart Sharpen мы можем увидеть хорошую вычислительную производительность графического ядра Kaveri, но она всё равно не позволяет A10-7850K опередить похожий по стоимости четырёхъядерный Haswell. И кстати, даже со включённым OpenCL-ускорением старший Richland превосходит A10-7850K за счёт более высокой тактовой частоты своих вычислительных и графических ядер.

Может быть перенесена на GPU и часть операций по транскодированию видео высокого разрешения. Для проверки того, какой прирост в скорости можно получить в этом случае, мы воспользовались поддерживающей OpenCL утилитой MediaCoder 0.8.28. Оценка производительности проводится с использованием исходного 1080p@50fps файла в AVC-формате из бенчмарка x246 FHD Benchmark 1.0.1, имеющего битрейт около 30 Мбит/с.

Здесь производительность Kaveri за счёт задействования для вычислений графического ядра удаётся увеличить совсем незначительно. Зато интеловский Core i5-4440, обладающий поддержкой специальной технологии для перекодирования видео Quick Sync, при включении вычислительных ресурсов графического ядра наращивает свою скорость в разы. На самом деле и в процессорах AMD есть похожая технология для аппаратного кодирования видеоконтента — VCE. Однако по какой-то причине ни одна из распространённых утилит для перекодирования видео этот движок не поддерживает. Будем надеяться, что с внедрением в Kaveri новой и более гибкой версии этого движка VCE 2 ситуация наконец сможет поменяться.

Ещё один пример популярного приложения, поддерживающего OpenCL, — это профессиональная программа для редактирования и монтажа видео Sony Vegas Pro 12. При выполнении в ней рендеринга видео нагрузка может распределяться по разнородным ресурсам гибридных процессоров.

Вовлечение в вычислительную работу графического ядра процессоров Kaveri позволяет получить очень весомый прирост в скорости рендеринга видео. Однако это всё равно не позволяет старшему APU компании AMD догнать конкурирующий Core i5-4440. Современные интеловские процессоры располагают гораздо более производительными x86-ядрами, поэтому даже при активации OpenCL A10-7850K серьёзно не дотягивает до скорости Haswell. Кроме того, интеловские процессоры тоже поддерживают OpenCL и ускоряются при подключении к вычислительной работе ресурсов графического ядра. Прирост скорости при этом не такой впечатляющий, как у APU компании AMD, тем не менее списывать его со счетов явно не стоит.

По просьбе AMD мы включили в эту часть тестирования и Futuremark PCMark 8 2.0. Данный бенчмарк при моделировании обычной пользовательской активности в общеупотребительных задачах может задействовать OpenCL-ускорение. И тогда мы можем получить представление о той производительности, которую будут показывать гибридные процессоры в идеальном случае, когда эффективную поддержку гетерогенных вычислений получат все распространённые приложения.

Понятно, почему AMD использует результаты PCMark 8 2.0 во всех своих маркетинговых материалах. Благодаря своему сильному графическому ядру A10-7850K побеждает во всех трёх сценариях: Home, Creative и Work. Это явно указывает на то, что при условии грамотной гетерогенной оптимизации приложений процессоры Kaveri могут оказаться гораздо лучше интеловских CPU. Иными словами, развиваемая AMD концепция APU действительно имеет большой потенциал, полноценно раскрыть который и должно помочь внедрение технологии HSA.

⇡ Энергопотребление

Энергопотребление — это ещё один традиционно больной вопрос для процессоров AMD. По крайней мере для их производительных модификаций, которые не имеют искусственно заниженных частот для удовлетворения требованиям экономичных тепловых пакетов. С выпуском процессоров Kaveri AMD рассчитывала немного поправить сложившуюся ситуацию и даже немного уменьшила расчётные показатели тепловыделения для старших моделей линейки A10. Помочь улучшению энергетических характеристик должен был не только новый 28-нм техпроцесс, но и снизившиеся тактовые частоты. Иными словами, удельная производительность в пересчёте на каждый затраченный ватт должна была возрасти.

Как же обстоит дело на практике? На следующих ниже диаграммах приводится полное потребление систем (без монитора), использующих встроенную процессорную графику, измеренное на выходе из розетки, в которую подключен блок питания тестовой платформы. Все имеющиеся в процессорах энергосберегающие технологии активированы. Нагрузка на процессорные ядра создаётся 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX, а графические ядра нагружаются утилитой Furmark 1.12.

Потребление современных процессоров в состоянии простоя близко к нулю, так что показатели, приведённые на графике выше, касаются скорее платформ в целом, нежели исследуемых APU. Поэтому не удивительно, что, вне зависимости от того, какой процессор установлен в платформе Socket FM2+ , потребление получается примерно одинаковым. Система же на базе Haswell потребляет меньше — сказываются энергосберегающие технологии, которыми располагают современные наборы логики Intel.

При полной нагрузке на x86-ядра неожиданно выясняется, что A10-7850K стал даже более прожорливым, чем предыдущий флагман поколения Richland, A10-6800K. Потребление нового процессора выше на 9 Вт — даже несмотря на то, что его рабочие частоты заметно меньше. Соответственно, ни о каком соперничестве в экономичности с интеловскими четырёхъядерниками речь вести невозможно.

При графической нагрузке ситуация несколько отличается. Графическое ядро процессоров Kaveri обладает заметно лучшей экономичностью, чем графика Richland. Однако необходимо упомянуть один нюанс: Kaveri умеют динамически управлять частотой своего графического ядра, и при высокой нагрузке она автоматически снижается. По всей видимости, в данном случае мы как раз и столкнулись с пределом по потреблению, поскольку во время тестирования A10-7850K и A8-7600 частота их GPU периодически снижалась со штатных 720 МГц до 650 МГц, а временами — даже до 550 МГц.

Невысокое потребление демонстрируют Kaveri и при параллельной нагрузке на все ядра одновременно. Однако в данном тесте мы столкнулись с интеллектуальным управлением частотой не только GPU, но и вычислительных ядер. Как оказалось, при высокой графической нагрузке Kaveri не только сбрасывают частоту своего GPU, но и ограничивают частоту процессорных ядер 3-гигагерцовой величиной. В результате при одновременной высокой нагрузке на все ресурсы гибридного процессора его потребление оказывается не слишком большим, но это, естественно, сказывается и на производительности.

⇡ Разгон

Старшая модель Kaveri, A10-7850K, формально относится к числу оверклокерских моделей, обладающих разблокированными множителями, — на это недвусмысленно указывает литера K в конце модельного номера. Но в данном случае это скорее дань традиции, нежели реальная сильная сторона новинок. Новый, применяемый для изготовления Kaveri, 28-нм SHP (Super High Performance) техпроцесс совершенно не способствует появлению у этих APU нераскрытого частотного потенциала. И даже с теоретических позиций новые гибридные процессоры должны гнаться ещё хуже, чем их предшественники, тоже не отличавшиеся хорошими возможностями разгона.

Это подтвердилось и на практике. Максимальной частотой, при которой A10-7850K, с одной стороны, сохранял стабильность, а с другой — не снижал свою скорость из-за превышения предельной температуры, оказалась 4,4 ГГц. Напряжение питания на процессоре при этом пришлось поднять до 1,375 В.

Следует подчеркнуть, что разгон A10-7850K — не такая уж и тривиальная процедура из-за интеллектуальных алгоритмов динамического управления частотой в зависимости от температурного режима и нагрузки. Увеличение процессорного множителя выше номинала на первый взгляд проходит очень легко и редко когда вызывает проблемы со стабильностью. Но при тестировании под нагрузкой нередко выясняется, что процессор для сохранения своей работоспособности самовольно сбрасывает частоту отдельных ядер существенно ниже заданных в BIOS материнской платы значений. К сожалению, эта интеллектуальность никак не отключается, поэтому при рассмотрении оверклокерских результатов, помимо всего прочего, требуется уделять отдельное внимание проверке реальных частот всех четырёх процессорных ядер. Такое самопроизвольное «торможение» процессора, к сожалению, не даёт возможности существенно поднимать его напряжение питания.

Попутно с традиционной процессорной частью можно разогнать и встроенное в APU графическое ядро. С увеличением напряжения на северном мосту процессора до 1,375 В, стабильности GPU нам удалось добиться при повышении его частоты в BIOS материнской платы до 960 МГц.

Впрочем, на самом деле, разгон графики в A10-7850K имеет мало практического смысла. Во-первых, отнюдь не частота ограничивает производительность GPU, а пропускная способность шины памяти. Во-вторых, при повышении частоты GPU вновь приходится сталкиваться со слишком интеллектуальным автономным управлением частотой. Увеличение частоты графического ядра приводит к тому, что в реальности при 3D-нагрузке она начинает систематически сбрасываться до более низких значений, и наблюдаемая на практике игровая производительность практически не возрастает.

Иными словами, AMD старалась сделать из Kaveri процессоры с предсказуемым энергопотреблением и тепловыделением, а это потребовало внедрения технологий управления реальной частотой, которые плохо уживаются с оверклокингом. Это значит, что Kaveri для экспериментов по разгону подходит неважно.

⇡ Выводы

В целом Kaveri оказался очень неоднозначным продуктом, и мнения о нём могут кардинально различаться в зависимости от того, под каким углом смотреть на новинку. Об этом мы уже говорили, когда рассматривали модификацию A8-7600, это же должны повторить и сейчас, по итогам знакомства с A10-7850K.

Новый процессор безумно интересен тем, что он развивает концепцию гетерогенных вычислений и внедряет технологию HSA, которая позволяет разработчикам программных продуктов легко перейти к написанию алгоритмов, исполняющихся на вычислительных кластерах графического ядра. Кажется, ещё немного — и AMD добьётся того, что новые приложения будут работать на её процессорах не хуже, чем на CPU компании Intel. Для этого у Kaveri есть все необходимые ресурсы и, самое главное, огромная теоретическая вычислительная мощность, кроющаяся в графическом ядре.

Однако не всё так просто. Пока существует не так много даже простых оптимизированных под OpenCL приложений, а эффективность имеющихся реализаций гетерогенных вычислений оставляет желать лучшего. К тому же на параллельные вычислители графического ядра могут быть перенесены далеко не любые алгоритмы. В результате, подчёркивая, что в теории системы на базе Kaveri могут быть очень продуктивны, мы вынуждены констатировать реальное и заметное отставание рассмотренной нами старшей модели A10 от конкурирующего четырёхъядерного Core i5 в подавляющем большинстве счётных задач. Причём такая ситуация наблюдается сейчас не только в приложениях, исполняемых исключительно на x86-ядрах, но и там, где поддержка OpenCL уже реализована.

Другое дело — игры. Здесь у AMD всё совсем хорошо, даже несмотря на то, что скорость встроенного в A10-7850K GPU категорически упёрлась в пропускную способность шины памяти. Несмотря на это, конфигурации, построенные на этом процессоре и использующие возможности интегрированного графического ядра, с полным правом могут считаться полноценными игровыми системами начального уровня. Большинство современных игр может исполняться на A10-7850K в Full HD-разрешении, а многие из них, например популярные сетевые проекты, при этом вполне сносно работают даже с выбором среднего или высокого качества изображения. Десктопные Haswell подобную игровую производительность не могут предложить в принципе, по крайне мере до тех пор, пока Intel не решится перенести в настольные модели процессоров старшие модификации своих графических ядер GT3/GT3e.

В итоге на данный момент A10-7850K можно рекомендовать лишь как основу недорогих настольных компьютеров для нетребовательных игроков. Для энтузиастов же этот процессор малоинтересен — в первую очередь из-за своей ограниченной x86-производительности. Впрочем, если AMD умерит свои амбиции и снизит цены, противопоставив A10-7850K не четырёхъядерным, а двухъядерным процессорам конкурента, мы будем готовы пересмотреть свою позицию.

Лучшая программа для разгона процессора AMD позволит вашему компьютеру работать значительно быстрее и выполнять эффективнее сложные задания.

AMD – это вид микропроцессоров для персональных компьютеров и ноутбуков, которые изготовляет и выпускает компания AMD.

Технология таких микропроцессоров позволяет выполнять задания с высокой производительностью для 32-х разрядных систем.

Встроенный в систему процессор не использует все свои ресурсы. Таким образом, продлевается срок его эксплуатации. Разгон необходимо осуществлять целенаправленно и нерегулярно.

Иначе, можно нанести серьезный вред аппаратным компонентам ПК или ноутбука.

Рассмотрим наиболее эффективные приложения, которые способны увеличить частоту работы процессора от компании AMD.

Утилита Over Drive

Мощное приложение для AMD 64. Программа бесплатная.

Сразу же после первого запуска программы всплывает диалоговое окно, которое предупреждает пользователя о том, что он несет полную ответственность за все совершенные в программе действия, которые могут привести к поломке процессора.

После соглашения с предоставленной информацией появится главное окно программы.

Следуйте инструкции, чтобы разогнать микропроцессор системы:

  • Слева найдите пункт, который называется Clock Voltage;

  • Внимательно изучите появившееся окно. Первая колонка данных – это тактовая частота каждого доступного ядра микропроцессора. Вторая вкладка - порядковый множитель ядра, это число и нужно изменить;
  • Чтобы настроить множитель, необходимо нажать на кнопку Контроль скорости. Она выделена зеленым цветом на рисунке ниже. Затем отрегулируйте ползунки.

Разгон с помощью функции Advanced Clock Calibration

ACC – это функция для разгона AMD athlon. Особенность этого приложения заключается в том, что регулировка и подбор необходимых частот осуществляются очень точно.

С приложением можно работать как в самой операционной система, так и в БИОСе .

Чтобы отрегулировать работу центрального микропроцессора, перейдите во вкладку Performance Control в меню материнской плати.

Клавиша находится в верхней части главной панели инструментов утилиты.

Полезная информация:

Для разгона процессора можно воспользоваться программой . Это это простая и понятная утилита для оверклокинга (разгона процессора). С её помощью даже новичок сможет немного разогнать свой ЦП.

Программа ClockGen

Главная цель утилиты – увеличить тактовою частоту работы микропроцессора через программу в режиме реального времени.

Также с помощью удобного меню программы можно осуществить разгон других аппаратных компонентов: системных шин, памяти.

Программа оснащена мощным генератором частот и несколькими средствами мониторинга системы, с помощью которых можно регулировать температуру компонентов и управлять работой системы охлаждения .

Краткая инструкция по использованию:

  1. Чтобы разогнать процессор , запустите утилиту. На левой панели главного окна найдите пункт PLL Control и нажмите на него;
  2. В правой части окна появятся два ползунку. Понемногу изменяйте положение ползунка Selection. Помните! Делать это нужно понемногу и очень медленно.
    Резкое перетаскивание может спровоцировать слишком быстрый разгон и моментальный сбой процессора или других аппаратных компонентов компьютера;
  3. Нажмите на клавишу применения изменений.

Таким же образом вы можете ускорять работу оперативной памяти и системных шин. Для этого выберите необходимый компонент в окне PLL Setup.

Реалии рынка центральных процессоров таковы, что среди компаний, выпускающих х86-совместимые устройства, доминируют два крупных игрока: Intel и AMD. Некогда успешная VIA Technologies сегодня не предлагает конкурентоспособных решений, хотя, в её ассортименте есть весьма интересные энергоэффективные продукты для встраиваемых систем и мобильных устройств. Что касается лидеров рынка, то компания Intel занимает порядка 83% рынка, в то время как Advanced Micro Device вынуждена довольствоваться скромной долей в 16%. На фоне успехов силиконового гиганта из Санта-Клары, AMD очень непросто конкурировать и удерживать технологическое превосходство. Тем не менее, остается рыночная ниша, в которой чипмейкер из Саннивейла чувствует себя очень уверенно. Речь идет о гибридных процессорах, или APU (Accelerated Processing Units), которые объединяют на одном полупроводниковом кристалле графическое и вычислительные ядра. Вышедшие в начале 2011 года экономичные APU E-series , предназначенные для использования в составе мобильных и встраиваемых систем, позволили AMD закрепиться на этом перспективном рынке. А представленные полугодом позже APU A-series перового поколения, известные также как Llano, лишь усугубили успех. Эти гибридные процессоры наделены весьма мощным, как для интегрированного решения, графическим акселератором, который обеспечивает приемлемый уровень быстродействия в большинстве современных 3D-игр. В то же время, производительность вычислительной части APU Llano невысока, а энергопотребление оставляет желать лучшего, особенно, в сравнении с новейшими Intel Ivy Bridge. Понимая, что повышением тактовых частот и косметическими улучшениями дизайна не то что опередить, но даже догнать продукты конкурента уже не удастся, компания AMD приняла решение о внедрении в гибридные процессоры принципиально новой микроархитектуры Piledriver — улучшенной версии нашумевшей в прошлом году Bulldozer. И уже в октябре 2012 года на суд общественности были представлены обновленные APU A-Series, получившие кодовое имя Trinity. Помимо модернизации вычислительной части изменения коснулись и графического ускорителя, а сами гибридные процессоры получили новый разъем Socket FM2. Очень кстати, хотя и с некоторым опозданием, в тестовой лаборатории оказался AMD A10-5800K, который и позволит нам оценить быстродействие и разгонный потенциал новейших Trinity.

Особенности дизайна Trinity

Полупроводниковые кристаллы APU Trinity изготавливаются с соблюдением 32-нм норм литографического процесса, площадь ядра составляет 246 кв. мм, а общее число транзисторов насчитывает около 1300 млн. Ключевой особенностью гибридных процессоров AMD A-series второго поколения стал переход на микроархитектуру Piledriver, в то время как APU Llano использовали вычислительные ядра К10 Stars, ведущие свою родословную от первых Athlon 64. По своей сути Piledriver представляет собой улучшенную и доработанную микроархитектуру Bulldozer, впервые использованную в процессорах AMD FX . В своей максимальной конфигурации AMD A-series второго поколения могут содержать два вычислительных модуля Piledriver, графическое ядро Radeon HD 7000, контроллеры оперативной памяти и шины PCI Express 2.0, ряд вспомогательных блоков, а также встроенный северный мост, который обеспечивает связь между всеми компонентами гибридного процессора.


Каждый из вычислительных модулей Piledriver состоит из двух целочисленных блоков (ALU), которые снабжены собственными кэшами L1, одного устройства для выполнения операций с плавающей точкой (FPU), единственного декодера блока предвыборки инструкций и общего массива кэш-памяти второго уровня объемом 2 МБ. Такое строение позволят каждому из двух вычислительных модулей выполнять до четырех вычислительных потоков одновременно. Однако, скорость работы в приложениях, интенсивно использующих блоки FPU, может сильно снижаться вследствие совместного использования ресурсов двумя потоками вычислений.


От AMD FX гибридные процессоры второго поколения отличает отсутствие кэш-памяти третьего уровня. Тем не менее, производитель заявляет о некоторых нововведениях, улучшающих быстродействие Piledriver по сравнению с Bulldozer. Например, были улучшена работа блока предсказания переходов и планировщика заданий, а также увеличена скорость выполнения операции деления. Размер буфера L1 TLB увеличился вдвое, а эффективность работы кэш-памяти второго уровня была улучшена за счет ускоренной очистки от неиспользуемых при вычислениях данных и улучшенного механизма предвыборки. Появилась поддержка новых дополнительных инструкций, таких как FMA3 и F16C.

Отсутствие кэш-памяти третьего уровня предъявляет повышенные требования к эффективности северного моста и контроллера ОЗУ. Кроме того, графическое и процессорные ядра имеют совместный доступ к оперативной памяти, но характер и объемы данных при этом различны. Вычислительные модули генерируют гораздо меньше запросов, но эти запросы имеют высший приоритет и должны быть обработаны немедленно. Видеоядро же использует гораздо больше памяти для кадрового буфера, поэтому, для обеспечения доступа встроенной видеокарты к контроллерам ОЗУ существует выделенная 256-битная шина Radeon Memory Bus. Также, графическое ядро может общаться со встроенным северным мостом посредством шины FCL (Fusion Control Link), которая, используется для передачи служебной и управляющей информации.


Возможности APU A-series второго поколения по работе с ОЗУ обеспечивают два 64-битных контроллера, которые могут работать в двухканальном режиме. Поддерживаются модули оперативной памяти SDRAM DDR3 с тактовой частотой 1866 МГц, что обеспечивает теоретическую полосу пропускания до 29,8 ГБ/с. Максимальный объем ОЗУ ограничен на отметке в 64 Гбайт. Одним из существенных нововведений контроллера оперативной памяти стала поддержка динамического управления частотой и напряжением модулей ОЗУ в угоду лучшей энергоэффективности.

В сравнении с гибридными процессорами предыдущего поколения графическая составляющая Trinity была полностью переработана. Интегрированное видеоядро, известное под кодовым именем Devastator, получило потоковые процессоры VLIV4, которые широко используется в семействе дискретных акселераторов Southern Islands. Многие надеялись, что обновленные APU A-series получат потоковые процессоры с архитектурой Graphics Core Next (GCN), показывающей лучшие результаты в неграфических вычислениях — одном из основных идеологических принципов APU.


Тем не менее, архитектура VLIV4 обеспечивает поддержку API DirectX 11 и OpenCL, а также обладает лучшей в сравнении с VLIV5 эффективностью использования аппаратных ресурсов. Напомним, что неприятной особенностью дизайна VLIV5 являлся тот факт, что пятый ALU (T-unit) каждого из скалярных SIMD-процессоров, способный исполнять сложную инструкцию (Special Function), часто простаивал из-за отсутствия должной оптимизации со стороны программного кода видеоигр. Отказ от T-unit повысил показатели производительности на единицу площади полупроводникового кристалла, а также снизил энергопотребление графического ускорителя и дал возможность увеличить его таковые частоты. В итоге, в своей максимальной конфигурации графическое ядро Devastator может содержать шесть SIMD-движков, каждый из которых состоит из четырех текстурных блоков и 16 потоковых VLIV4-процессоров.


Таким образом, старшие модели APU A-series располагают 384 унифицированными шейдерными процессорами и 24 текстурными блоками. Кроме этого, в состав графического ядра Devastator входит блок аппаратного декодирования видеопотока (UVD3), а также узел Video Codec Engine (VCE), обеспечивающий ускорение кодирования видео в формате H264. Существует возможность объединения ресурсов встроенной и дискретной видеокарт класса Radeon HD 6570 в связки Dual Graphics, что существенно повышает быстродействие в современных 3D-играх. Остается добавить, что гибридные процессоры Trinity поддерживают фирменную технологию Eyefinity и обеспечивают вывод изображения одновременно на три монитора.

Что касается технологий энергосбережения, то за управление тактовой частотой и напряжением новейших APU A-series отвечает фирменная технология AMD Turbo Core 3.0. Её работа заключается в динамическом управлении быстродействием вычислительных и графического ядер в пределах ограниченного теплового пакета. Диспетчер P-state Manager анализирует текущее энергопотребление гибридного процессора и, в зависимости от характера нагрузки, задает режим работы отдельных функциональных блоков. Таким образом, при выполнении задачи, требующей максимум ресурсов центрального процессора, частота вычислительных модулей будет повышена относительно номинала, а при запуске 3D-приложения будет максимально ускорена работа встроенной видеокарты.

Платформа Socket FM2

По сравнению с AMD A-series предыдущей ревизии, дизайн APU Trinity претерпел кардинальные изменения. Поэтому, нет ничего удивительного, что обновленные гибридные процессоры получили новый разъем Socket FM2, который, увы, не совместим с решениями прошлого поколения. Новый конструктив очень похож на своего предшественника, различие заключается лишь в количестве контактов: у Socket FM2 их 904, в то время как на процессорах в исполнении Socket FM1 было 905 позолоченных ножек. Что касается электрических характеристик, то разъем поддерживает установку гибридных процессоров с TDP до 100 Вт включительно, а конструкция креплений позволяет использование систем охлаждения, предназначенных для Socket AM3+/FM1.


Для APU A-series второго поколения был разработан новый чипсет AMD A85X. Как вы помните, кристалл гибридного процессора содержит графическое и процессорные ядра, встроенный северный мост, контроллеры оперативной памяти DDR3 и шины PCI Express 2.0, а также цифровые интерфейсы для вывода изображения и UMI (Unified Media Interface) для связи с чипсетом. Поэтому, системная логике, имеющей одночиповую компоновку, достается роль «южного моста», который отвечает за работу дисковой подсистемы, периферийных устройств и плат расширения.


Чипсет AMD A85X поддерживает подключение до восьми устройств SATA 6 Гбит/с с возможностью организации RAID 0, 1, 5 и 10, обеспечивает работу четырех портов USB 3.0 и 10 каналов USB 2.0. Для подключения плат расширения и дополнительных контроллеров системная логика предлагает четыре линии PCI Express 2.0 и несколько слотов PCI. Микросхема FCH (Fusion Communication Hub) изготавливается с соблюдением норм 65-нм литографического тех.процесса в корпусе FC-BGA 605, её тепловыделение не превышает 4,7 Вт, что позволяет использовать для её охлаждения компактные пассивные радиаторы.


Что касается отличий системной логики AMD A85X от чипсета AMD A75 — флагманского решении для платформы Socket FM1, то они минимальны и заключаются в официальной поддержке конфигураций AMD CrossFireX, добавлении двух каналов SATA 6 Гбит/с, а также возможности объединения накопителей в массивы RAID 5. Более того, чипсеты, предназначенные для AMD A-series первого поколения, могут с успехом использоваться для построения материнских плат Socket FM2. Для персональных компьютеров начального уровня рекомендуется системная логика AMD A55, лишенная поддержки SATA 6 Гбит/с и USB 3.0, материнские платы среднего класса предполагается оснащать чипсетом AMD A75, а для самых производительных и функциональных систем позиционируется новейший AMD A85X.

Модельный ряд AMD A-series в исполнении Socket FM2 содержит разнообразные модификации, которые отличаются количеством вычислительных модулей, конфигурацией графического адаптера, а также тактовой частотой функциональных блоков и расчетным тепловыделением. Таким образом, на основе единственного полупроводникового кристалла создана целая продуктовая линейка, включающая и доступные модели начального уровня, и производительные решения для игровых системных блоков. Заметим, что кроме APU для Socket FM2 будут выпущены процессоры Athlon с отключенным графическим ядром. Актуальный модельный ряд AMD для платформы Socket FM2 имеет следующий вид:

Процессор A10-5800K A10-5700 A8-5600K A8-5500 A6-5400K A4-5300 Athlon X4 750K Athlon X4 740 Athlon X2 340
Разъем FM2 FM2 FM2 FM2 FM2 FM2 FM2 FM2 FM2
Техпроцесс, нм 32 32 32 32 32 32 32 32 32
Число ядер 4 4 4 4 2 2 4 4 2
Номинальная частота, МГц 3800 3400 3600 3200 3600 3400 3400 3200 3200
Частота Turbo Core, МГц 4200 4000 3900 3700 3800 3600 4000 3700 3600
L2-кеш, Мбайт 4 4 4 4 1 1 4 4 1
Графическое ядро Radeon HD 7660D Radeon HD 7660D Radeon HD 7560D Radeon HD 7560D Radeon HD 7540D Radeon HD 7480D - - -
Число унифицированных шейдерных процессоров 384 384 256 256 192 128 - - -
Частота графического ядра, МГц 800 760 760 760 760 723 - - -
Поддерживаемый тип памяти DDR3-1866 DDR3-1866 DDR3-1866 DDR3-1866 DDR3-1866 DDR3-1600 DDR3-1866 DDR3-1866 DDR3-1600
TDP, Вт 100 65 100 65 65 65 100 65 65

Разнообразие модификаций позволят каждому пользователю выбрать именно тот продукт, который больше всего отвечает поставленным задачам. Экономных пользователей заинтересуют AMD А4 и младшие Athlon, а любители разгона смогут обратить внимание на модели c литерою «К» в названии модели, оснащенные свободным коэффициентом умножения. Вместе с широким ассортиментом системных плат для платформы Socket FM2 новейшие процессоры AMD представляются неплохим вариантом для построения недорогих игровых и мультимедийных системных блоков.AMD A10-5800K. Особенности

Попавший в нашу тестовую лабораторию AMD A10-5800K оказался без какого-либо комплекта поставки, поэтому, о дизайне упаковки и фирменном кулере нам сказать нечего. Сам гибридный процессор был выпущен на 3-й неделе 2012 года на фабрике GlobalFoundries в Дрездене, Германия. Хрупкий полупроводниковый кристалл накрыт металлической крышкой, выполняющей также функции распределителя тепла. Внешне Trinity ничем, кроме маркировки, не отличим от APU A-series предыдущего поколения.


С обратной стороны гибридного процессора AMD A10-5800K находятся 904 позолоченных ножек, тогда как у его предшественников, предназначенных для установки в разъем Soсket FM1, контактов было на один больше — 905, так что вставить новые AMD A-series в старые материнские платы не получится.


В продуктовой линейке гибридных процессоров второго поколения AMD A10-5800K занимает верхнюю строку в табели о рангах. Эта модель имеет наибольшие среди APU A-series тактовые частоты, разблокированный коэффициент умножения и самое производительное графическое ядро Radeon HD7660D. Расплачиваться за такую «роскошь» приходится солидным энергопотреблением, поэтому, для старшего APU установлен TDP на уровне 100 Вт.

Информационно-диагностическая утилита AIDA64 отлично осведомлена о характеристиках гибридных процессоров Trinity и безошибочно выдает о них полную информацию. Полупроводниковый кристалл А10-5800K имеет ревизию А1, а его номинальная частота составляет 3800 МГц при напряжении 1,375 В.


Благодаря работе технологии AMD Turbo Core 3.0, большую часть времени вычислительные ядра функционируют на 4000 МГц с напряжением 1,464 В, а при запуске приложений, не имеющих многопоточной оптимизации частота повышается до впечатляющих 4200 МГц.


В моменты простоя в дело вступает функция энергосбережения AMD Cool’n’Quite, которая снижает частоту и напряжение вычислительных ядер до 1400 МГц и 1,072 В соответственно.


Использование продвинутой микроархитектуры обеспечивает AMD A-series второго поколения поддержку наборов инструкций SSE4.1 и SSE4.2, а также специфические инструкции XOP и AVX, которые увеличивают быстродействие при обработке мультимедйиных данных, а также набор команд AES, ускоряющий шифрование. Как мы уже говорили, гибридные процессоры Trinity получили поддержку инструкций FMA3 и F16C. Встроенный контроллер памяти обеспечивает работу модулей SDRAM DDR3 в двухканальном режиме на частоте 1866 МГц, но, при наличии «правильной» системной платы могут быть доступны режимы до 2400 МГц включительно.

Встроенное в AMD A10-5800K видеоядро Radeon HD 7660D содержит 384 унифицированных потоковых процессора и 24 текстурных блока, работающих на частоте 800 МГц. Использование дизайна VLIV4 обеспечивает интегрированной видеокарте поддержку API DirectX 11, DirectCompute 5.0 и OpenCL.


В итоге, гибридный процессор AMD А10-5800K имеет вполне современные и очень конкурентоспособные характеристики. При рекомендованной стоимости в 133 доллара США прямыми конкурентами для новинки выступают двухъядерные модели Intel Core i3, которые благодаря поддержке Hyper Threading также поддерживают обработку четырех вычислительных потоков. Тем не менее, у APU Trinity есть сильный козырь, которого начисто лишены бюджетные продукты Intel — богатые возможности разгона, к исследованию которых мы немедленно приступаем.

Разгонный потенциал

Прежде чем приступить к исследованию частотного потенциала гибридного процессора AMD А10-5800K вспомним, какие трудности возникали во время разгона его предшественника APU Llano. Из-за использования единственного тактового генератора и жесткой фиксации множителей, формирующих тактовые частоты для работы различных подсистем, материнские платы Socket FM1 крайне негативно относятся к увеличению базовой частоты. Зная об этом, компания AMD сделала подарок энтузиастам, выпустив APU A-series с разблокированными коэффициентами умножения. Впрочем, владельцы «обычных» модификаций Llano также могли повысить быстродействие своих гибридных процессоров, но ровно на столько, насколько позволяли возможности системных плат.

Несмотря на кардинальные отличия в дизайне AMD A-series второго поколения, архитектура платформы Socket FM2 не претерпела существенных изменений в сравнении с предшественницей, унаследовав от неё нестабильное поведение после увеличения базовой частоты. К счастью, в продуктовой линейке Trinity также присутствуют модификации с литерою «К» в названии модели, обладающие незаблокированными коэффициентами умножения. Именно к таким продуктам относится и герой сегодняшнего обзора — AMD А10-5800K, поэтому, во время экспериментов по разгону мы воспользовались всеми его преимуществам.

Согласно нашим исследованиям, разгонный потенциал гибридных процессоров Llano находится около отметки в 3600 МГц при использовании хороших воздушных систем охлаждения. Именно до такой частоты разогнался наш тестовый AMD A8-3850 . Переход на микроархитектуру Bulldozer поднял планку разгона до 4500—4600 МГц «на воздухе», так что от AMD А10-5800K мы ожидали похожего результата. В итоге, при использовании мощного кулера Thermalright Silver Arrow гибридный процессор разогнался до 4500 МГц простым увеличением коэффициента умножения.


Для обеспечения стабильности напряжение на вычислительных ядрах было увеличено на 0,11875 В относительно штатного значения. В таком режиме система без ошибок выполняла весь набор тестовых приложений и даже сохраняла стабильность в стресс-тесте LinX. При этом температура гибридного процессора не превысила 53 °С, а напряжение 1,48 В можно считать относительно безопасным для повседневной эксплуатации. Что касается частоты северного моста, то нам удалось поднять её до 2200 МГц, а модули ОЗУ заработали в режиме 2133 МГц с задержками 10-11-11-30-2Т. Встроенная видеокарта разогналась со штатных 800 МГц до 1013 МГц, но для этого пришлось поднять соответствующее напряжение на 0,15 В — до 1,35 В. Стабильность в таком режиме была подтверждена многократным прохождением графических тестов.


Таким образом, не прибегая к экстремальным методам охлаждения, мы получили прирост тактовой частоты вычислительных ядер с 3800 МГц до 4500 МГц, а для встроенного графического ускорителя разгон составил 213 МГц. Не лучший результат, но не стоит забывать, что мы имеем дело со старшей моделью Trinity, для которой изначально установлены очень высокие тактовые частоты, следовательно, запас прочности полупроводниковых кристаллов практически исчерпан. В этой связи гораздо более интересными кандидатами для экспериментов по разгону выглядят младшие APU A-series.Тестовый стенд

Для измерения продуктивности и оценки разгонного потенциала тестового AMD A10-5800K мы использовали следующий набор комплектующих:

  • системная плата: ASUS F2A85-V Pro (AMD A85X, UEFI Setup 5104 от 21.09.2012);
Обращаем ваше внимание на системную плату ASUS F2A85-V Pro, в основе которой лежит системная логика A85X. Эта «материнка» обладает продуманным дизайном и удобной прошивкой, так что в ближайшее время мы планируем опубликовать полноценный обзор этого интересного продукта.

В качестве единственного конкурента для гибридного процессора Trinity выступил APU A-series предыдущего поколения AMD A8-3850, работающий на частоте 2900 МГц. Увы, нам не удалось раздобыть для теста A8-3870K, который имеет незаблокированные коэффициенты умножения и быстрее нашего Llano на 100 МГц. Для удобства сравнения спецификации участников сегодняшнего тестирования представлены в следующей таблице.

AMD A8-3850
Разъем Socket FM2 Socket FM1
Техпроцесс CPU, нм 32 32
Количество транзисторов, млн. 1300 1180
Площадь кристалла, кв. мм 246 228
Число ядер 4 4
Номинальная частота, МГц 3800 2900
Частота Turbo Core, МГц 4200 -
Множитель 38 29
Объем L1 кэша, КБ 16 x 4 + 64 x 2 128 x 4
Объем L2 кэша, КБ 2048 x 2 1024 x 4
Объем L3 кэша, МБ - -
Встроенное видеоядро Radeon HD7660D Radeon HD6550D
Частота ядра, МГц 800 600
Количество потоковых процессоров 384 400
Количество текстурных блоков 24 20
Каналов памяти 2 2
Поддерживаемый тип памяти DDR3 1333/1600/1866 DDR3 1333/1600/1866
Шина для связи с чипсетом 5 GT/s UMI 5 GT/s UMI
Наборы инструкций x86, x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, SSE4.1, SSE4.2, XOP, AES, AVX, FMA, FMA4 x86, x86-64, MMX, 3DNow!, SSE, SSE2, SSE3, SSE4A
TDP, Вт 100 100
Рекомендованная стоимость, $ 122 87

Для тестирования Socket FM1 использовалась системная плата ASUS F1A75-V Pro , в основе которой лежит набор системной логики AMD A75. Эта модель отлично зарекомендовала себя при работе с AMD A-series первого поколения благодаря выдающемуся разгонному потенциалу и отличному уровню быстродействия. Таким образом, AMD A8-3850 работал в составе тестового стенда такой конфигурации:
  • системная плата: ASUS F1A75-V Pro (AMD A75, UEFI Setup 5104 от 21.09.2012);
  • кулер: Thermalright Silver Arrow (вентилятор 140 мм, 1300 об/мин);
  • память: G.Skill TridentX F3-2400C10D-8GTX (2x4 ГБ, DDR3-2400, CL10-12-12-31);
  • видеокарта: ASUS HD7950-DC2T-3GD5 (Radeon HD 7950);
  • накопитель: WD VelociRaptor WD1500HLHX (150 ГБ, 10000 об/мин, SATA 6 Гбит/с);
  • блок питания: Seasonic X-650 (650 Вт).
В обоих случаях тестовое «железо» работало под управлением ОС Microsoft Windows 7 Enterprise 64 bit (90-дневная ознакомительная версия), обновленной до SP1 через службу Microsoft Update. Для AMD A10-5800K были дополнительно установлены заплаты KB2645594 и KB2646060. Файл подкачки и UAC были отключены, никакие другие оптимизации не выполнялись. Из драйверов устанавливался только AMD Catalyst 12.10 от 25.10.2012. В номинальном режиме модули ОЗУ функционировали на частоте 1866 МГц с задержками 8-10-10-28-1Т, технологии энергосбережения были активированы, а для Trinity также включалась функция AMD Turbo Core. Дополнительно, оба APU были протестированы в режиме максимального быстродействия. При этом AMD A10-5800K был разогнан до 4500 МГц, частота встроенного северного моста составила 2200 МГц, а модулей ОЗУ — 2133 МГц с таймингами10-11-11-30-2T. Гибридный процессор AMD A8-3850 заработал на 3591 МГц при увеличении напряжения до 1,4625 В. Для этого базовая частота была повышена до 133 МГц с одновременным уменьшением множителя до х27, а модули ОЗУ функционировали на частоте 2128 МГц с задержками10-12-12-31-2T.

Методика измерения заключается в трехкратном повторении каждого теста и последующего расчета среднего арифметического. В случае если какой либо результат существенно отличался от двух других тестирование продолжалось до получения нормального среднего значения. Тестирование проводилось при использовании следующих приложений:

  • AIDA64 2.70 (Cache & Memory benchmark);
  • SuperPI XS 1.5;
  • wPrime Benchmark 2.06;
  • Futuremark PCMark 7;
  • 7-Zip 9.20 x64 (встроенный тест);
  • TrueCrypt 7.1a (встроенный тест);
  • Cinebench 11.5R (64bit);
  • POV-Ray v3.7 (встроенный тест)
  • x264 HD Benchmark v5.0;
  • Futuremark 3DMark 11;
  • Aliens vs. Predator;
  • Batman: Arkham City;
  • BattleForge;
  • Crysis 2;
  • DiRT: Showdown;
  • F1 2012;
  • Far Cry 2;
  • Lost Planet 2;
  • Metro 2033;
  • World in Conflict: Soviet Assault.
Результаты тестирования

Синтетические приложения

Наше исследование быстродействие процессоров открывает измерение пропускной способности подсистемы ОЗУ в Cache & Memory benchmark, входящей в состав информационно-диагностической программы AIDA64.




В штатном режиме новинка опередила A8-3850 в операциях чтения и копирования, но проиграла при записи данных в оперативную память. После разгона A10-5800K получил существенный прирост и лишь увеличил свое преимущество. Очевидно, из-за отсутствия кэша L3 AMD A-series второго поколения «любят» скоростные модули ОЗУ и повышение частоты встроенного северного моста.

Тестирование в приложении SuperPI XS 1.5 позволяет оценить эффективность выполнения однопоточных приложений, в то время как wPrime Benchmark 2.06 эффективно загружает все доступные вычислительные ресурсы.



Результаты в SuperPI XS 1.5 раз дают понять, что эффективность выполнения однопоточных вычислений у Piledriver оставляет желать лучшего. Без разгона оба APU показали идентичный уровень быстродействия, а после повышения частот A8-3850 вышел лидеры, не оставляя шансов своему преемнику. В wPrime Benchmark 2.06 ситуация еще драматичнее, Trinity с его двумя модулями FPU никак не смог тягаться с полноценными четырьмя ядрами Llano, ни в штатном режиме, ни после разгона.

Приложение Futuremark PCMark 7 предназначено для измерения комплексной производительности в типичных прикладных задачах, с которыми пользователи сталкиваются практически ежедневно. К ним относятся кодирование видео высокой четкости, современные 3D игры, обработка цифровых изображений, работа в офисных приложениях и в сети Интернет.


В общем зачете A10-5800K без малейшего труда расправился со своим предшественником. Отметим, что результаты A8-3850 даже после разгона не дотянули до уровня быстродействия Trinity, который работает в штатном режиме.





Обновленный APU A-series лидирует во всех без исключения дисциплинах, а в подтестах Productivity и Computation его преимущество достигает 15—20%. Будем надеяться, что эта приятная тенденция сохранится и в прикладных программах.

Прикладные программы

Бесплатный архиватор 7-Zip 9.20 не только обеспечивает хороший уровень сжатия, но также имеет отличную оптимизацию для многопоточной обработки. Для оценки быстродействия мы использовали встроенный тест производительности с настройкой размера словаря 32МБ.



В тесте компрессии данных оба гибридных процессора показали одинаковое быстродействие. В штатном режиме при выполнении распаковки архива A10-5800K немного опередил соперника, но после разгона четыре «честных» ядра Llano оказались быстрее двух вычислительных модулей Piledriver.

Криптографическая программа TrueCrypt 7.1a позволяет надежно защитить персональную информацию пользователей. При этом шифрование данных является весьма ресурсоемкой задачей даже для современных многоядерных процессоров. Для оценки быстродействия запускался встроенный тест, а в зачет шли результаты средней скорости шифрования методом Twofish-AES.


Уверенную победу A10-5800K принесла поддержка приложением аппаратного ускорения шифрования AES, и тут «старичку» Llano нечего противопоставить.

Приложение Cinebench 11.5R позволяет оценить скорость работы процессоров при трехмерной визуализации, а программа POV-Ray v3.7 дает представление о продуктивности системы при построении объемных изображений методом трассировки лучей.



В однопоточном задании высокая тактовая частота A10-5800K отчасти компенсирует слабую удельную эффективность его вычислительных модулей, но в многопоточном тесте A8-3850 демонстрирует лучший результат, и даже разгон не позволяет старшему Trinity тягаться с четырехъядерным Llano.


При использовании драйвера OpenGL графического акселератора для анимации в режиме реального времени. Гибридный процессор AMD A10-5800K обеспечил заметное преимущество над APU A-series первого поколения, причем, производительность Trinity в этом тесте отлично масштабировалась с ростом тактовой частоты.



Картина в POV-Ray v3.7 полностью повторяет расстановку сил при рендеринге изображений в Cinebench 11.5R. В однопоточном тесте быстрее APU Trinity, а при использовании всех доступных ресурсов четыре физических ядра A8-3850 работают ничуть не хуже, а в разгоне даже лучше, чем два вычислительных модуля Piledriver.

Завершает блок прикладных программ измерение быстродействия при кодировании видео Full HD с применением кодека H.264. С этой целью мы использовали приложение x264 HD Benchmark версии 5.0, которое позволяет оценить продуктивность процессора при обработке видеоролика с разрешением 1080p.



При выполнении первого прохода, во время которого анализируется содержимое видеофайла, первое место досталось AMD A10-5800K. Но уже при выполнении второго прохода четырехъядерный Llano сократил отрыв, а после разгона и вовсе догнал APU A-series второго поколения. Несмотря на все улучшения архитектуры Piledriver двухъядерные вычислительные модули Trinity все же не могут исполнять два потока с той же эффективностью, как это делают классические четыре ядра AMD A8-3850.

Производительность в 3D-играх

Прежде чем приступить к тестам в современных 3D-играх мы запустили бенчмарк Futuremark 3DMark 11. Его движок использует API DirectX 11 и реалистичную модель физических эффектов, поэтому, для уменьшения влияния видеокарты на результаты мы использовали набор настроек Performance.


В общем зачете с минимальным преимуществом победил AMD A10-5800K. Что касается разгона, то для обоих гибридных процессоров наблюдается одинаковый прирост порядка 5%.




Анализ результатов отдельных тестовых дисциплин заставляет усомниться в адекватности интегральной оценки 3DMark 11. Все-таки, в сценариях Physics и Combined новинка продемонстрировала заметное преимущество. В то же время, в графическом подтесте AMD A8-3850 оказался чуточку быстрее своего наследника, что, скорее всего и предопределило расстановку сил в общем зачете.

Для оценки производительности гибридных процессоров в паре с дискретным графическим ускорителем в современных видеоиграх мы отобрали шесть приложений: Batman: Arkham City, Crysis 2, F1 2012, Far Cry 2, Metro 2033 и World in Conflict: Soviet Assault. Все они обладают повышенными требованиям к вычислительной подсистеме, хорошей повторяемостью результатов и удобными средствами для измерения частоты смены кадров. Тестирование проводилось в двух режимах: в разрешении 1680х1080 и высоких, но не максимальных настройках изображения без включения полноэкранного сглаживания, и в разрешении 1920х1080 с максимальным качеством картинки и активацией AA4x.



Результаты тестирования во встроенном в игру бенчмарке ясно дают понять, что для раскрытия потенциала видеокарты Radeon HD 7950 производительности гибридных процессоров недостаточно. В этой связи победа AMD A10-5800K смотрится не очень убедительно.



Тестирование в шутере Crysis 2 преподносит очередной неприятный сюрприз: в разрешении1680х1080 «старичок» AMD A8-3850 победил APU A-series второго поколения. Тем не менее, в качественном режиме оба участника показали одинаковые результаты, то есть производительность «уперлась» в возможности графического адаптера.



В гоночном симуляторе F1 2012 гибридный процессор AMD A10-5800K заметно опередил гибридное решение предыдущего поколения. Тем не менее, уровень быстродействия обеих участников нельзя назвать высоким, такой быстрой видеокарте как Radeon HD 7950 нужен более производительный процессор.



В шутере от первого лица Far Cry 2 гибридный процессор AMD A-series нового поколения работает быстрее своего предшественника. То что, разгон обеспечивает прирост в разрешении 1680х1050, говорит о хорошей масштабируемости игрового движка, а вот зависимость количества fps в режиме максимального качества означает недостаточную продуктивность обоих APU.



При тестировании в игре Metro 2033 APU Llano немного проиграл своему технологически более продвинутому сопернику. Однако производительность видеокарты сильно зависит от продуктивности вычислительных ядер, и в этом случае ни один из рассматриваемых гибридных процессоров не может обеспечить должного уровня быстродействия.



Ничего нового тестирование в игре World in Conflict не преподнесло, AMD A10-5800K значительно быстрее APU Llano как в штатном режиме, так и после разгона. Но ни один из участников тестирования не позволяет полностью загрузить работой мощную видеокарту Radeon HD 7950.Игровая производительность интегрированного графического ядра

Оба гибридных процессора проходили испытание в двух режимах: в штатном, а также в максимальном разгоне. В последнем случае графическое ядро Radeon HD 6550D, которым оснащается AMD A8-3850, работало с частотой 798 МГц, а встроенный в Trinity видеоускоритель Radeon HD 7660D функционировал на 1013 МГц. Для тестирования продуктивности интегрированных в APU видеокарт мы выбрали несколько игровых проектов, предлагающих пользователям увлекательный геймплей и отличное качество картинки. Понимая, что разрешение Full HD и качественные режимы графики могут быть «не по зубам» для участников тестирования, мы проводили измерения при разрешении экрана 1280х800 и средне-высоких настройках изображения.

Для предварительной оценки быстродействия интегрированных в APU A-series видеоподсистем мы запустили комплексный полусинтетический бенчмарк Futuremark 3DMark 11 c профилем Performance и получили такие результаты.


Модернизация графического ядра Trininty принесли свои плоды, благодаря чему уже в штатном режиме AMD A-series второго поколения опередил своего предшественника почти на 30%. Что касается разгона, то повышение тактовых частот самым благоприятным образом сказывается на продуктивности обоих APU. При этом AMD A10-5800K достигает уровня быстродействия дискретной графической карты AMD Radeon HD 6670, оснащенной быстрой видеопамятью GDDR5!


Шутер от первого лица Aliens vs. Predator предъявляет очень строгие требования к продуктивности графической подсистемы. Тем не менее, встроенные видеокарты справились с этой игрой при средних настройках изображения, что дает повод задуматься об увеличении разрешения или активации опций, улучающих качество картинки. Преимущество нового APU достигло 15%, а средний прирост от разгона составил порядка 17% для обоих участников тестирования.


В онлайн-стратегии BattleForge встроенная в AMD A8-3850 видеокарта едва справляется с нагрузкой, и только разгон позволяет Llano добиться приемлемого уровня производительности. Что касается Trinity, то его быстродействия достаточно даже на штатных частотах.


В требовательном к компьютерному «железу» шутере AMD A10-5800K опередил своего предшественника почти на 18%, а в разгоне разрыв увеличился до впечатляющих 25%. И вновь у пользователей появляется повод задуматься о повышении качества изображения.


Тестирование в симуляторе автогонок DiRT: Showdown снова продемонстрировало подавляющее преимущество APU Trinity. В среднем AMD A8-3850 проиграл новинке около 20%, хотя разгон пропорционально повышает быстродействие обоих гибридных процессоров.


Продуктивность встроенных графических ускорителей достигло такого уровня, который обеспечивает достаточную частоту смены кадров даже в таких ресурсоемких играх, как Lost Planet 2, правда, при средних настройках качества изображения. В штатном режиме AMD A10-5800K продемонстрировал приемлемый для комфортной игры уровень продуктивности, а вот AMD A-series первого поколения едва справился с нагрузкой и даже в разгоне не достиг результатов Trinity.

Энергопотребление

Для оценки энергоэфективности тестовых стендов мы использовали электронный прибор Basetech Cost Control 3000, измеряющий потребляемую мощность «от розетки». С его помощью для конфигураций с дискретной видеокартой фиксировались пиковое значение потребляемой мощности тестовых стендов во время трехкратного прохождения стресс-теста LinX, а также среднее энергопотребление во время простоя системы. Измерения проводились в двух режимах: на штатной частоте и после разгона.


В номинальном режиме система, построенная на базе AMD A10-5800K, потребляет в простое на 7 Вт меньше, чем конфигурация с AMD A8-3850. А при интенсивной вычислительной нагрузке оба системных блока демонстрируют одинаковое энергопотребление, что совершенно в свете равного TDP AMD A-series разных поколений. Что касается режима разгона, то система APU Trinity оказалась экономичнее тестового стенда Socket FM1. Даже несмотря на более высокие частоты и напряжения Два двухъядерных процессорных модуля Piledriver потребляют меньше электроэнергии, чем четыре полноценных ядра Llano.

Также, мы измерили энергопотребление тестовых стендов при использовании встроенных графических ускорителей. Были оценены пиковое значение мощности во время прохождения теста Futuremark 3DMark 11, а также среднее энергопотребление систем в режиме бездействия и при проигрывании видеофайла Full HD с аппаратным ускорением.


В штатном режиме система, построенная на базе AMD A10-5800К, показала худшую энергоффективность при выполнении графического теста, но оказалась более экономичной в простое и при проигрывании видео с разрешением 1080р. В разгоне при прохождении 3DMark 11 обе конфигурации потребляют практически одинаковое количество электроэнергии. В простое и при проигрывании видео потребляемая тестовым стендом Socket FM1 мощность возрастает, что можно объяснить пропорциональным увеличением частоты всех функциональных блоков системной платы, в то время как энергоэффективность Trinity остается на прежнем уровне.

Выводы

Стоит ли говорить, что второе поколение гибридных процессоров у компании AMD получилось вполне удачным. С выходом APU Trinity производительность существенно возросла при неизменном уровне энергопотребления и относительно гуманной розничной стоимости. Использование прогрессивной микроархитектуры Piledriver принесло определенные плоды, в результате чего в большинстве прикладных приложений обновленные AMD A-series обеспечивают лучшее быстродействие, чем их предшественники. Впрочем, остаются области применения, в которых четырехъядерные гибридные процессоры Llano чувствуют себя увереннее, чем APU Trinity. К таким областям относятся рендеринг трехмерных изображений и математические расчеты, которые не слишком часто выполняются на домашних мультимедийных ПК. Зато, быстродействие встроенной видеоподсистемы новых APU подросло, что явилось следствием использования микроархитектуры VLIV4, а также увеличение на четверть количества блоков обработки текстур. Что касается гетерогенных вычислений, то их популярность все еще не слишком высока среди программистов. Еще одним неприятным фактом стало внедрение для AMD A-series второго поколения нового процессорного разъема, несовместимого с существующей инфраструктурой Socket FM1.

Если говорить о прямом сравнении новейшего AMD A10-5800К и APU A-series первого поколения A8-3850, то прогресс заметен невооруженным взглядом. В большинстве прикладных программ продуктивность Trinity заметно выше, чем у его предшественника. Особенно ярко проявляется преимущество гибридного процессора нового поколения в современных играх при использовании встроенного графического ускорителя. Не стоит списывать со счетов и хороший частотный потенциал, а также неплохие возможности разгона для модификаций с литерою «К» в названии модели. Впрочем, прямое сравнение A10-5800К и A8-3850 не слишком корректно, так как первый дороже второго почти на треть, но даже при использовании старшего из Lllano — A8-3870K результаты тестирования изменились бы на единицы процентов. Для полноты картины остро недостает результатов тестирования процессоров Intel, хотя, единственный прямой конкурент для AMD A10-5800К — двухъядерный Core i3-3220, обладающий менее производительной видеокартой, но потребляющий вдвое меньше электроэнергии. Что касается продуктивности в прикладных задачах, то здесь результаты сравнения Trinity и двухъядерных Ivy Bridge будут зависеть от оптимизации программного кода.

Таким образом, попытаемся определить оптимальную сферу применения для гибридных процессоров AMD второго поколения. Младшие модели с расчетным TDP 65 Вт подойдут в качестве основы для компактного мультимедийного ПК, причем, наилучшим вариантом будет использование встроенного графического ядра. Модификации с разблокированными коэффициентами умножения и тепловыделением 100 Вт можно использовать для построения игрового системного блока, благо, продуктивности интегрированной видеокарты хватит для работы большинства современных 3D-игр. Что касается перспектив последующей установки дискретного графического ускорителя, то здесь следует ограничиться адаптерами класса AMD Radeon HD 7850 или NVIDIA GeForce GTX 650 Ti, так как даже в разгоне AMD A-series второго поколения не смогут раскрыть потенциал более мощной видеокарты.

Оборудование для тестирования было предоставлено следующими компаниями:

  • AMD — гибридные процессоры AMD A10-5800К и AMD A8-3850;
  • ASUS — видеокарта ASUS HD7950-DC2T-3GD5, системные платы ASUS F2A85-V Pro и ASUS F1A75-V PRO;
  • G.Skill — комплект памяти G.Skill TridentX F3-2400C10D-8GTX;
  • Syntex — блок питания Seasonic X-650;
  • Thermaltake — кулер Thermalright Silver Arrow;
  • — жесткий диск WD VelociRaptor WD1500HLHX.

Современные программы и игры требуют от компьютеров высоких технических характеристик. Пользователи настольных компьютеров могут заняться апгрейдом разных комплектующих, а вот владельцы ноутбуков лишены такой возможности. В статье мы писали о разгоне CPU от Intel, а сейчас расскажем о том, как разогнать АМД процессор.

Программа AMD OverDrive создана специально компанией AMD для того, чтобы пользователи фирменной продукции могли пользоваться официальным ПО для качественного разгона. При помощи этой программы можно разогнать процессор на ноутбуке или на обычном настольном компьютере.

Убедитесь, что ваш процессор поддерживается программой. Он должен быть одним из следующих: Hudson-D3, 770, 780/785/890 G, 790/990 X, 790/890 GX, 790/890/990 FX.

Настройте BIOS. Отключите в нем (выставьте значение «Disable ») следующие параметры:

Cool’n’Quiet;
C1E (может называться Enhanced Halt State);
Spread Spectrum;
Smart CPU Fan Contol.

Установка

Сам процесс установки максимально прост и сводится к подтверждению действий инсталлятора. После скачивания и запуска установочного файла вы увидите следующее предупреждение:

Внимательно с ними ознакомьтесь. Если вкратце, то здесь говорится о том, что неправильные действия могут привести к порче материнской платы, процессора, а также к нестабильности работы системы (потере данных, неправильном отображении изображений), снижению производительности системы, уменьшению продолжительности службы процессора, системных компонентов и/или системы в общем, а также к общему ее краху. AMD также заявляет, что все действия вы делаете на свой страх и риск, и используя программу вы соглашаетесь с Лицензионным Соглашением пользователя и компания не несет ответственности за ваши действия и возможные их последствия. Поэтому убедитесь, что вся важная информация имеет копию, а также строго следуйте всем правилам оверклокинга.

Ознакомившись с данным предупреждением, нажмите на «ОК » и начните установку.

Разгон процессора

Установленная и запущенная программа встретит вас следующим окном.

Здесь находится вся системная информация о процессоре, памяти и другие важные данные. Слева располагается меню, через которое можно попадать в остальные разделы. Нас интересует вкладка Clock/Voltage. Переключитесь на нее - дальнейшие действия будут происходить в поле «Clock ».

В обычном режиме вам предстоит разгонять процессор, сдвигая доступный ползунок вправо.

Если у вас включена Turbo Core технология, то сперва нужно нажать на зеленую кнопку «Turbo Core Control ». Откроется окно, где сперва нужно поставить галочку рядом с «Enable Turbo Core », а затем начать разгон.

Общие правила разгона и сам принцип почти ничем не отличается от разгона видеокарты. Вот несколько советов:

1. Обязательно передвигайте ползунок по чуть-чуть, и после каждого изменения сохраняйте изменения;

2. Тестируйте стабильность системы;
3. Мониторьте повышение температуры процессора через Status Monitor > CPU Monitor ;
4. Не пытайтесь разогнать процессор так, чтобы в итоге ползунок оказался в правом углу - в некоторых случаях это может не потребоваться и даже навредить компьютеру. Иногда небольшое повышение частоты может оказаться достаточным.

После разгона

Через AMD OverDrive (Perfomance Control > Stability Test - для оценки стабильности или Perfomance Control > Benchmark - для оценки реальной производительности);
Поиграв в ресурсоемкие игры 10-15 минут;
При помощи дополнительного ПО.

При появлении артефактов и различных сбоях необходимо снизить множитель и снова вернуться к тестам.
Программа не требует помещения себя в автозагрузку, поэтому ПК всегда будет грузиться с заданными параметрами. Будьте аккуратны!

Программа дополнительно позволяет разогнать и другие слабые звенья. Поэтому если у вас есть сильный разогнанный процессор и другое слабое комплектующее, то весь потенциал CPU может быть не раскрыт. Поэтому вы можете попробовать аккуратный разгон, например, памяти.

Понравилась статья? Поделиться с друзьями: